
cvsci: CVS Check-in Validation Configuration
Reference

CML00012-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road

Oxford, OX2 6EY, United Kingdom
www.codemagus.com

Copyright c© 2014 by Code Magus Limited
All rights reserved

August 16, 2016

CONTENTS 1

Contents
1 Introduction. 2

1.1 Overview. 2

2 Program execution. 2
2.1 Parameters. 2

2.1.1 Overview. 2
2.1.2 Parameter syntax. 2
2.1.3 Examples . 3

3 Configuration. 3
3.1 Environment variables. 3
3.2 Configuration file. 4

3.2.1 NODE entry . 4
3.2.2 NOTIFYFILE entry . 5
3.2.3 COMMON NODE entry . 5
3.2.4 Syntax. 5

4 Developer Testing. 8

A Configuration examples 8

1 INTRODUCTION. 2

1 Introduction.

1.1 Overview.

The cvsci program runs at CVS check in time. It will validate the parameters passed to it
by CVS and return success or failure based on a given configuration. The configuration
defines the rules to which the path and name of a file being checked in must adhere to.

2 Program execution.

2.1 Parameters.

2.1.1 Overview.

At execution time CVS passes the path and file names of files to be checked in to
the program as parameters. Although these parameters are defined by CVS the program
does allow other parameters first. When implementing this program and specifying it
in the CVS file commitinfo these parameters can be specified; CVS will append the
path and file names after these.

2.1.2 Parameter syntax.

The parameters are set out as follows:

Parameters

- ProgramParameters - CVSParameterList -

ProgramParameters

³

µ - --verbose
¶
µ

³
´

³

µ- -v
¶
µ

³
´

¶

´

³

µ - --config-file
¶
µ

³
´
- =

¶
µ

³
´

³

µ- -c
¶
µ

³
´

¶

´

- ConfigFileName

¶

´

¶

µ

³

´

¶

´

-

2.1 Parameters. 3

ConfigFileName

- Valid filesystem file name
¶
µ

³
´

-

CVSParameterList

- QualifiedFiles³

µ- CVSParameterList - QualifiedFiles

¶

´

-

QualifiedFiles

- PathName - FileName¶

µ

³

´

-

PathName

- /
¶
µ

³
´

- Character¶

µ

³

´

¶

µ

³

´

-

FileName

- Character¶

µ

³

´

-

Character

- Valid filesystem character (excluding /)
¶
µ

³
´

-

2.1.3 Examples

• Single directory and file

./cvsci /Pathnode1/Pathnode2 file11

• Single directory and file, plus config file definition

./cvsci --config-file=./cvsci.cfg /Pathnode1/Pathnode2 file11

• Single directory and multiple files

./cvsci /Pathnode1/Pathnode2 file11 file12 file13

3 CONFIGURATION. 4

• Multiple directories and files This command is split into two lines for readability
only.

./cvsci /Pathnode1/Pathnode2 file11 file12
/Pathnode3/PN4/PN5 f21 f22 f23 f24

3 Configuration.

The execution of the program is controlled by a configuration file and various environ-
ment variables.

3.1 Environment variables.

The environment variables that affect program execution are:

• CVSCI_CONFIG This defines the configuration file that the program will use

• CVSCI_VERBOSE If set to Y will cause the program to emit detailed information
about its progress.

• CVSCI_DEBUG If set to Y will cause the program to emit very detailed informa-
tion about its progress. This option prints developer information and should not
need to be used for normal processing in order to understand the execution flow
or diagnose a problem.

3.2 Configuration file.

The configuration file holds all the information needed by the program to validate each
node of the path and then finally the file name as presented by CVS .

3.2.1 NODE entry

There has to be a node called Root. As the program validates a path name it always
starts with the node called Root. Each node defined in the configuration file is made
up of a number of rules. These rules are each associated with a regular expression that
is used to match the node name being validated and therefore determine which rule is to
be used.

The types of node defined in the configuration file are:

3.2 Configuration file. 5

• Path nodes. These nodes always refer to a next validation node. This means that
as the program validates each node the rule used defines which set of rules (or
validation node) to use for the next node of the given path name.

• File node. These nodes are defined by the fact that they never point to another
node. I.e. they are terminating nodes for the rule tree. Each file name is matched
to check that it conforms to one of the regular expressions defined by the rules
within that node.

• Special nodes. These nodes do not have specific rules but keywords that determine
the processing allowed. They are:

– allownone - No files or directories are allowed to be checked in under this
node.

– allowall - Any name format can be used for files or sub-directories under
this node.

– empty - The node allows no specifically named files or sub directories under
it except those matching the rules defined in the common node.

Nodes need to be defined in such a way that there are exactly the same amount of nodes
in the path name being validated as in the validation nodes defined in the configuration
file. The last node of the path must reference a node that will validate the file name. I.e.
it is considered an error if the number of nodes made up by the path and file name from
CVS does not exactly match the number of defined validation nodes in the configuration
file.

3.2.2 NOTIFYFILE entry

This entry allows the system administrator to configure contact information, so that
when a user receives an error message due to some problem they also receive the con-
tents of the named notify file. So if a user cannot solve their problem or they have
experienced a system type failure, they can use this information to contact or notify
the correct person. Each line of this file is echoed back to the CVS user except those
starting with --; such lines are comment lines in the notify file, usually there for the
convenience of the administrator setting up the system.

3.2.3 COMMON NODE entry

The common node entry allows for the definition of terminal node rules that will apply
to all file names from CVS. In other words once validation reaches the file name, the
file name is validated against the current validation node’s rules and if there is no match
also against the rules for the common node. Only if both fail is the file name rejected as
not matching the supplied rules. Consider the following example.

3.2 Configuration file. 6

Register the common node name:

common node common_files;

This means that the rules for the node ‘common_files’ will also be checked when a
file name is validated.

Define the node as follows:

NODE common_files
description
"The common node rules are used for validating every node"
"after the node’s own rules are validated for a file name."
"This can be helpful when there is a file (or pattern name)"
"that occurs in every directory of the tee structure."
"An example is ’readme.txt’"
RULE README MATCH /ˆreadme\.txt$/

;

This node does not have to be pointed to by any other node in the tree. In other words
it is usually a stand alone node that is only accessible through the ‘COMMON NODE’
configuration statement.

3.2.4 Syntax.

ConfigFile

- ConfigStatements -

ConfigStatements

- ConfigStatement³

µ- ConfigStatements - ConfigStatement

¶

´

-

ConfigStatement

- NodeList³

µ- NotifyFileDescription

µ- CommonNodeNameDefinition

¶

´

´

-

3.2 Configuration file. 7

NodeList

- Node³

µ- NodeList - Node

¶

´

-

Node

- node
¶
µ

³
´
- NodeName ³

´¶

µ- description
¶
µ

³
´
- NodeDescriptionList ³

´¶

µ- RuleSpecificationForm - ;
¶
µ

³
´

-

NodeName

- IDENTIFIER -

NodeDescriptionList

- NodeDescription³

µ- NodeDescriptionList - NodeDescription

¶

´

-

NodeDescription

- STRING -

RuleSpecificationForm

- RuleOverride³

µ- RuleSpecificationList

¶

´

-

RuleOverride

- allowall
¶
µ

³
´

³

µ- allownone
¶
µ

³
´

µ- empty
¶
µ

³
´

¶

´

´

-

3.2 Configuration file. 8

RuleSpecificationList

- RuleSpecification³

µ- RuleSpecificationList - RuleSpecification

¶

´

-

RuleSpecification

- RuleNameSpecification ³

´¶

µ- RuleRegexSpecification - ActionSpecification -

RuleNameSpecification

- rule
¶
µ

³
´
- RuleName -

RuleName

- IDENTIFIER -

RuleRegexSpecification

- match
¶
µ

³
´
- RuleRegex -

RuleRegex

- REGEX -

ActionSpecification

- NextNodeNameSpecification³

µ- ValidateProgramSpecification

µ

¶

´

´

-

NextNodeNameSpecification

- nextnode
¶
µ

³
´
- NextNodeName -

NextNodeName

- IDENTIFIER -

3.2 Configuration file. 9

ValidateProgramSpecification

- validationprogram
¶
µ

³
´
- ValidationProgram ³

´¶

µ- ValidateEnvSpecification - ValidateParmsSpecification -

ValidationProgram

- IDENTIFIER³

µ- STRING

¶

´

-

ValidateEnvSpecification

- validationenv
¶
µ

³
´
- (

¶
µ

³
´
- KeywordValuePairList -)

¶
µ

³
´

-

KeywordValuePairList

- KeywordValuePair³

µ- KeywordValuePairList - KeywordValuePair

¶

´

-

KeywordValuePair

- EnvKeyword - =
¶
µ

³
´
- EnvValue -

EnvKeyword

- IDENTIFIER -

EnvValue

- STRING -

ValidateParmsSpecification

- validationparms
¶
µ

³
´
- ValidationParmsList -

ValidationParmsList

- ValidationParm³

µ- ValidationParmsList - ValidationParm

¶

´

-

3.2 Configuration file. 10

ValidationParm

- STRING -

NotifyFileDescription

- notifyfile
¶
µ

³
´
- FileName - ;

¶
µ

³
´

-

CommonNodeNameDefinition

- common
¶
µ

³
´
- node

¶
µ

³
´
- NodeName - ;

¶
µ

³
´

-

FileName

- STRING -

STRING

- ´
¶
µ

³
´

³

µ- ¨
¶
µ

³
´

¶

´

- CHARACTER¶

µ

³

´

- ´
¶
µ

³
´

³

µ- ¨
¶
µ

³
´

¶

´

-

REGEX

- /
¶
µ

³
´

- CHARACTER¶

µ

³

´

- /
¶
µ

³
´

-

CHARACTER

- Any Character except TAB, Newline or Carriage return
¶
µ

³
´

¶

µ

³

´

-

IDENTIFIER

- a-z
¶
µ

³
´

³

µ- A-Z
¶
µ

³
´

µ-
¶
µ

³
´

¶

´

´

- a-z
¶
µ

³
´

³

µ- A-Z
¶
µ

³
´

µ-
¶
µ

³
´

µ- 0-9
¶
µ

³
´

¶

´

´

´

¶

µ

³

´

-

4 DEVELOPER TESTING. 11

4 Developer Testing.

Within in the CVS module cvsci there is a directory called testing. The shell script
test_cvsci.sh can be used to test the execution of the program. There is a section
for negative tests (e.g. invalid configuration file syntax etc.) and positive tests (e.g.
testing multiple paths and file names). This script and the corresponding configuration
file test_cvsci.cfg should be maintained if and when necessary.

A Configuration examples

1. Notify file specification
notifyfile /home/cvs/CVSROOT/cvs_notify.txt

2. Root rule - Required node validation This example defines the first validation node. The node
must be called Root (and is case sensitive). In this example /home must start the name of every
directory passed to this program. The next directory name is defined by the rule CVSNODE.

NODE Root
DESCRIPTION
"The Root Node is the first node in"
"the tree and must be specified exactly."
RULE rule01 MATCH /ˆhome$/ NEXTNODE CVSNODE

;

3. Directory validation node - next node only. This validation node defines that the directory name
must be cvs and that it must be followed by another directory defined by the rules in the node
MODULEA.

NODE CVSNODE
DESCRIPTION
"This is the main CVS node. Only specified"
"sub-directories are allowed under it."
RULE rule02 MATCH /ˆcvs$/ NEXTNODE MODULEA

;

4. Directory validation node - file validation only. This validation node defines a directory that
must have the name spreadsheets and only files of type .xls may be checked into it. It may
not have any sub-directories.

NODE spreadsheets
DESCRIPTION
"This is the spreadsheet directory"
"File names must start with A-Z or a-z"
"followed by any number of A-Z, a-z, 0-9"
"or _ (underscore) and must end with .xls."
RULE rule03 MATCH /ˆ[A-Za-z][A-Za-z0-9_]*\.xls$/

;

5. Directory validation node - file or directory validation. This validation node defines a directory
that must have the name moduleA and allows the next directory in the path to be defined by the

A CONFIGURATION EXAMPLES 12

rules of node spreadsheets or a file in this directory to be named as per the file rule (namely
dir.txt).

NODE MODULEA
DESCRIPTION
"This is the moduleA directory"
"It only allows the directory defined for"
"spreadsheets and a file named dir.txt."
RULE rule04 MATCH /ˆmoduleA$/ nextnode spreadsheets
RULE rule05 MATCH /ˆdir\.txt$/

;

6. Directory validation node - Override values. These validation nodes define a directory that:

• Allows no files or directories beneath it. Often this type of validation node is used as a place
holder for eventual (correct) rules. This also overrides the common node rules.

NODE NODE1
DESCRIPTION
"This directory allows no file or sub-directory name under it."
allownone

;

• Allows any files or sub-directories beneath it.

NODE NODE2
DESCRIPTION
"This directory allows any file or sub-directory name under it."
allowall

;

• is empty. Effectively this allows no files or sub-directories, except those that are defined in
the common node.

NODE NODE3
DESCRIPTION
"This directory allows files and directories that match the"
"rules defined in the common node (if it is defined)."
empty

;

7. Specifying the common node. The following defines which node definition will act as the com-
mon node:

common node rules_for_all
;

The following validation node defines the rules for the common node; in this case any file called
“readme.txt”. For a detailed explanation see section 3.2.3 on page 5.

NODE rules_for_all
DESCRIPTION
"This is the common node rules specification."
RULE rule05 MATCH /ˆreadme\.txt$/

;

	1 Introduction.
	1.1 Overview.

	2 Program execution.
	2.1 Parameters.
	2.1.1 Overview.
	2.1.2 Parameter syntax.
	2.1.3 Examples

	3 Configuration.
	3.1 Environment variables.
	3.2 Configuration file.
	3.2.1 NODE entry
	3.2.2 NOTIFYFILE entry
	3.2.3 COMMON NODE entry
	3.2.4 Syntax.

	4 Developer Testing.
	A Configuration examples

