
verify: Verify Rule Check System Reference

CML00061-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road

Oxford, OX2 6EY, United Kingdom
www.codemagus.com

Copyright c⃝ 2014 by Code Magus Limited
All rights reserved

May 20, 2019

CONTENTS CONTENTS

Contents
1 Introduction 3

2 Verify Processing 3

3 Processing 8

4 verify Configuration 10
4.1 Configuration File Header . 10
4.2 Configuration File Body . 10

4.2.1 Configuration Preamble . 11
4.2.2 Configuration Evaluate Statement 16
4.2.3 Configuration Definitions Sections 17
4.2.4 Variable Definition . 17
4.2.5 Condition Definition . 19
4.2.6 Rule Definition . 19
4.2.7 Event Definition . 20
4.2.8 Report Definition . 22
4.2.9 Procedure Definition . 23

5 Examples 31
5.1 Example 1 . 31

5.1.1 Verify script . 31
5.1.2 Verify Configuration . 34
5.1.3 Verify Application Parameters 37
5.1.4 Object Types . 38
5.1.5 Copy Book . 39
5.1.6 Verify Output Report: Code Magus Print 40
5.1.7 Verify Output Report: Weights 40
5.1.8 Verify Output Report: Verify 43
5.1.9 Verify Data Files: Input . 47
5.1.10 Verify Data Files: Ignored Records 47
5.1.11 Verify Data Files: Failed Records 47
5.1.12 Verify Data Files: Failed CSV Report 47

6 Expression Evaluation 48
6.1 Expression Overview . 48
6.2 Expression Grammar . 48

6.2.1 Lexical Elements . 48
6.2.2 Syntactical Elements . 50

6.3 Built-in Functions . 55
6.3.1 SysStrLen, strlen, length . 55
6.3.2 SysSubStr, substr . 55
6.3.3 SysString, string . 56
6.3.4 SysNumber, number . 56
6.3.5 SysStrCat, strcat . 57

Code Magus Limited 1 CML00061-01

CONTENTS CONTENTS

6.3.6 SysStrStr, strstr . 57
6.3.7 SysStrSpn, strspn . 57
6.3.8 SysStrCspn, strcspn . 58
6.3.9 SysStrPadRight, padright . 58
6.3.10 SysStrPadLeft, padleft . 59
6.3.11 SysFmtCurrTime, strftimecurr 59
6.3.12 SysTime, time2epoch . 60
6.3.13 SysStrFTime, strftime . 61
6.3.14 SysInTable, intable . 62
6.3.15 SysStrCondPack, condpack 63
6.3.16 TermAppStructDataGet, sfget 64
6.3.17 TermAppStructDataSet, sfset 64
6.3.18 gsub, replace . 65
6.3.19 alias, lookup . 67
6.3.20 pstore set, psset . 67
6.3.21 pstore get, psget . 68
6.3.22 pstore get cset, psget cset . 69
6.3.23 pstore get incr, psget incr . 70
6.3.24 pstore get incr cset, psget incr cset 70

Code Magus Limited 2 CML00061-01

2 VERIFY PROCESSING

1 Introduction

The Code Magus Limited verify Rule Check System is used for mass checking cases
or scenarios against a defined rule configuration and runs on the z/OS, Windows and
Unix/Linux platforms. The scenarios or cases requiring checking are kept in a container,
database or file system, whose access method, object identifier and options can be de-
scribed by a recio open specification string (or open spec). Refer to recio: Record
Stream I/O Library Version 1 [1] for details on the recio open spec strings and to
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15] for details on the various access methods
available. Typically, all the data required to be checked as a case item by verify are
presented in a single record. This record would, for example, contain the relevant state
of a system before a change, the transaction that initiated the state change, and the rel-
evant state of a system after a change. In verify these records are mapped using the
objtypes library as described in objtypes: Configuring for Object Recognition, Gen-
eration and Manipulation [17] and associated application or database metadata. Fields
can further be used in expressions as described in section 6 on page 48.

Parameterisation of configurations of verify is catered for using the applparms
library and associated interfaces as described in applparms: Application Parameters
Library User Guide and Reference Version 1 [13].

The script engine used in verify uses the debugapi debugger interface described in
debugapi: Debug API User Guide and Reference Version 1 [16]. This interface allows
remote and local debugging sessions, and also allows for integration of the script engine
into an IDE that supports a debugging graphical user interface.

2 Verify Processing

Figure 1 illustrates the components of verify from a processing point of view. The
components of verify are discussed in this document and the cited references; how-
ever a description of verify processing involves more than the internal components
of the system. This section describes verify processing from the point of view of the
inputs and outputs.

There are a number of inputs to the execution of verify:

• Configuration: An item that is introduced by definition in the verify configu-
ration file must be defined before (closer to the start) the use of or reference to the
defined item in a later defined item.

– Files: Bindings in the form of recio open spec strings for the input file that
contains the cases to be processed; as well as the open spec strings for the
output files to which records are copied as they exit the filtering and test
process at various stages.

Code Magus Limited 3 CML00061-01

2 VERIFY PROCESSING

Execution
Reports

Internal Representation

of Rule Configuration

Object Types Structure Access Method

Binding Types

Where−Clause Filter

Locate Rule

Execute Rule Check

Verify Rule Check System

Failed Filtering

Access

Method

Passed Test

Failed Test

No Applicable Rule

Missed

Parameter
Log

Parameter
Configuration

Ignore

Pass

Fail

Information
from

Evaluate
Statement

Parameter Interface

Weights
Training File

Configuration Meta Data
Mapping

Source
Core Data

User Interface

Figure 1: verify processing showing internal structure and interfaces

– Meta-data: Bindings to the object file definition which describes the layout
of the input records being processed and, in particular, to the type of record
that should be processed by the verify configuration.

– Class conditions: Definitions of the conditions used to assign the data into
various classes in the various dimensions of the application data space. Each
condition is defined with a name, a title and a predicate over the symbols of
the input record mapping as well as any prior or pre-defined global vari-
ables. An item belongs to the class corresponding to the condition if the
corresponding predicate evaluates to true.

– Supporting Functions: Named functions with the formal parameters and
corresponding types, the function return type and the function body make
up the definition of a script supporting function.

– Supporting Procedures: Procedures are called at various points to initiate
processing. For example, on determining that a various rule applies to a
case, that case is evaluated by invoking the corresponding procedure. Also,
procedures can be invoked when certain pre-defined events occur during the
execution of verify.

– Rules: Named rules are used to determine whether or not a case time passes
or fails. A rule has a name and a title for identification and description; a list
of the class conditions that when evaluated to true (that is, the item appears in

Code Magus Limited 4 CML00061-01

2 VERIFY PROCESSING

each of the classes corresponding to the named conditions) indicates that the
rule is applicable to the item; and the name and parameters of the procedure
to apply to determine whether the item satisfying all the requisite condition
classes passes or fails the test.

– Reports: Additional user defined reports and be defined and these can be
associated with events. When associated with an event, a report detail line
is evaluated and written to the report at the point that the event is raised. If
an event also has an associated call procedure clause, then the associated
procedure will be called before the report detail line is prepared.

Reports do not have to be associated with events. A report definition can
be referenced by a Report-statement. A Report-statement is an executable
statement which refers to a report. The execution of a Report-statement
causes a report detail line to be produced at the time of execution of the
statement.

– Events: In addition to the procedures used as the bodies for the rule check
logic, procedures may also be invoked at various predefined points within
the execution of verify. The trigger for these procedure invocations are
known as events. A report may also be associated an event. If a report is
associated with an event then a report detail line is generated when the event
occurs.

• Source File: The input file that contains the cases to process during an instance
of execution of verify is bound to within the configuration file. This binding
is in the form of an open spec string and hence includes the access method name,
object name, and any application access method option name-value pairs.

• Training File: The result of sampling the input data against the input source file
(or a subset of the input source file) is a training file of weights. This training file
is read in again during the normal execution of verify and is used to determine
the condition checking priority order when building the decision tree.

The execution of verify with a configuration against a set of cases produces a number
of outputs. The items that actually have a rule applied are those that pass certain filtering
as the input file is processed. The source file is processed sequentially, each record
read from the input file is checked to make sure that it matches the type named on the
evaluate statement. If the record matches the type, then an optional predicate where-
clause on the evaluate statement is tested if present. If the where-clause predicate
evaluates to true, then the record is considered for testing. The decision tree is applied
to all records considered for testing. If this yields a process which can be applied to the
record, then that process will evaluate the case and determine whether the case passes
or fails.

Normal execution of verify produces the following outputs:

Code Magus Limited 5 CML00061-01

2 VERIFY PROCESSING

• Tested File: Every record read from the source file that passes the evaluate
statement object type name and optional where-clause predicate is written to the
tested file if a binding is present. This represents all records passed into verify
for testing. Note this does not mean that the record will actually find its way to a
test procedure under a rule, it just means that the decision tree will be consulted
in order to determine a rule for the testing of the record.

• Ignore File: If a binding is present for the ignore file and if the item does not
pass the evaluate statement object type or fails the evaluatewhere-clause if
present, then the record is not passed on for testing and is written to the ignore
file. Further if the record is passed on for testing and a rule is found to apply,
then if the rule executes the skip statement then in this case the record is written
to the ignore file. In addition, when the rule executes the skip statement the
count of the number of times the rule is applied is not incremented.

• Missed File: If a record passed for testing (a candidate for writing to the tested
file, if present), but that verify fails to determine a rule for the record, then the
record is written to the missed file. The missed file is mandatory.

• Passed File: If a case record is passed in for testing, a rule applicable to the case
is found and that rule determines that the case passes the rule, then the case is
written to the passed file. The passed file is mandatory.

• Failed File: If a record is passed in for testing, a rule applicable to the case is
found, but that rule determines that the case fails, then the case is written to the
failed file. The passed file is mandatory.

• Report File: The result of the execution of verify on the supplied inputs pro-
duces a report file which summarises the instance of the execution of verify.
In addition, the report file includes trace and decision data as well as formatted
items to support the maintenance of the rules. The report file also contains the
script output written as the result of print and debug statements executed.

• Decision Tree: Once the structure of the decision tree has been determined, it is
possible to obtain a graphic rendering of the decision tree showing the conditions
on the path to the rule nodes. Figure 2 on page 7 shows an example of what this
would look like for a few of the rules and conditions from a sample configuration.
There is a tool for the interactive navigation of the rendered graph.

Code Magus Limited 6 CML00061-01

2 VERIFY PROCESSING

tran_pen

RULE: Charged Fee Should be Zero

Transaction should be charged

RULE: Apply DCARR Rate 0.75

DecisionTreeRoot

1407_SUNDRY CHARGES Savvy1490

RULE: Apply Set Fee 0.10

Figure 2: Graphical rendering of dynamically built decision tree

Code Magus Limited 7 CML00061-01

3 PROCESSING

3 Processing

The process of determining the rule to apply to a case involves determining within which
class, within specific dimensions that case belongs. For example, gender might be a
dimension which partitions the data into male and female classes. We use the term di-
mension here, rather than the term attribute as the class may be represented by more
than one attribute of the underlying data (an out of product rule condition could, for
instance, be determined by a high-balance and the recent history of a particular transac-
tion type). In verify, we define a class by a condition and we expect those conditions
that form part of the same dimension to form a partition of the data, or at the very least,
to uniquely assign every item to only one class within a dimension.

There could be any number of dimensions in the case data, with each dimension expect-
ing to possess the property described above. For the sake of illustration, however, we
assume two dimensions as depicted in Figure 3 on page 8.

Class d1c1 Class d1c2

Dimension 1

D
im

en
si

on
 2

C
la

ss
d2

c1
C

la
ss

d2
c2

Unclassified data
in dimension 2

Unclassified data
in dimension 1

Figure 3: Depiction of two dimensions through the case data showing two classes for
each dimension

In this example, there are two classes within each dimension. If each of the axes de-
pict the full range of possible case data, then each of the dimensions depicts ranges on
the axes of unclassified data (and hence, in this example, the dimensions do not form
partitions of the data).

A rule in verify consists of the predicated conditions (alternatively, rule requirements
or preconditions), together with the means of determining whether a case passes or fails

Code Magus Limited 8 CML00061-01

3 PROCESSING

(this is in the form a procedure that must be invoked to determine this). As a side
effect, the script code that performs the evaluation may maintain global data elements
for verify to report on (this allows, for example, valuations on all the classified cases
to be performed and reported on, or for test runs over the data to be done so that what-if
scenarios can be assessed).

There is no limit to the number of dimensions, and within each dimension there is
no limit to the number of possible classes; hence there is no limit to the number of
conditions that one might require. With a larger number of dimensions and a large
number of classes, the investment in an evaluation order might be significant. Also,
the effect of the evaluation order impacts the efficiency of the process of determining
which rule should apply, consequently verify employs a scheme whereby the case data
is sampled, and then the information gleaned from the sampling is used to decide the
structure of the rule determination decision tree. The result of this is that there is no
expensive manual optimisation required; and should the classification of the data change
significantly, a simple sampling of the data will result in the re-establishment of an
optimal evaluation order decision tree.

In terms of the example in Figure 3 on page 8, if it is determined that condition d1c2
is more frequent than condition d2c1, then this will cause that condition to be tested
earlier by placing it higher up in the decision tree. Also, a dimension which is signifi-
cantly lopsided toward a particular class should have that condition checked as soon as
possible.

Note that the above does not change the rule evaluation order. Rules have their condi-
tions added to the paths of the decision tree in the sample determined priority order. This
means that default rules can be used, and which just need to follow the higher priority
rules in the configuration file.

Code Magus Limited 9 CML00061-01

4 VERIFY CONFIGURATION

4 verify Configuration

A verify configuration is defined in an application specific grammar which is de-
scribed in this section. There is a broad structure to the configuration file and in general
an item needs to be defined before it can be referenced within the configuration. This is
to support the one-pass compiler of the verify configuration.

VerifyConfig

- VerifyHeader - VerifyBody - end
�� ��- .

����-

A verify configuration file comprises a header, a body and is terminated by the key-
word end followed by a full stop.

4.1 Configuration File Header

VerifyHeader

- verify
�� ��- Identifier - ;

����-

The header of a configuration file identifies it as a verify configuration and gives the
configuration an internal name.

The following is an example of the VerifyHeader:

verify CurrentAccounts;

4.2 Configuration File Body

VerifyBody

- Preamble - Evaluate - DefinitionSections -

The body of a verify configuration in turn, comprises three sections: A Preamble for
definitions and environment bindings such as files to process, parameter configurations,
and options; an Evaluate section which contains the evaluate statement and marks
the end of the Preamble; and the DefinitionSections which define the conditions, rules,
processes and events required for the processing of the cases files.

Logically, the file is split into sections which describe the processing environment (the
Preamble section); a section to describe what is to be processed (the Evaluate section);
and a section to describe how this is to be processed.

Code Magus Limited 10 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

4.2.1 Configuration Preamble

The Preamble section of a verify configuration describes the bindings to the environ-
ment in which the processing is to take place.

Preamble

- OptPreambleStatements -

OptPreambleStatements

�
�- PreambleStatements

�
�

-

PreambleStatements

- PreambleStatement�
�- PreambleStatements - PreambleStatement

�
�

-

PreambleStatement

- SetEnvStatement�
�- PathTypeStatement

�- OptionsStatement

�- ParametersStatement

�- SourceStatement

�- FailedStatement

�- PassedStatement

�- MissedStatement

�- TestedStatement

�- IgnoreStatement

�
�
�
�
�
�
�
�
�
�

-

There are a number of different types of statements that make up the Preamble section.
The Preamble section follows the VerifyHeader and is terminated by the Evaluate sec-
tion. The statements of the Preamble section may appear in any order (again, only with

Code Magus Limited 11 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

the restriction that any references in a Preamble statement must follow the statement
that defines the item being referenced).

SetEnvStatement

- set
�� ��- Identifier - =

����- String - ;
����-

The SetEnvStatement sets the environment variable corresponding to the Identifier to
the value of the result String (this is the value obtained by resolving all environment
variables and concatenating adjacent strings).

PathTypeStatement

- path
�� ��- type

�� ��- String - ;
����-

The PathTypeStatement provides a string pattern which is used for resolving object types
file names. The string is expected to contain a sequence of characters suitable for the
s-type conversion specifier as used in the sprintf(3) function.

The following is an example of the PathTypeStatement in which the environment vari-
able TYPEHOME is expected to return the directory path containing the objtypes
files:

path type ${TYPEHOME} "%s.objtypes";

OptionsStatement

- options
�� ��- Options - ;

����-

Options

- Option�
�- Options - ,

����- Option

�
�

-

Option

- trace
�� ���

�- verbose
�� ���- offline
�� ���- coverage
�� ���- applyall
�� ���- deforder
�� ��

�
�
�
�
�
�

-

Code Magus Limited 12 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

The OptionsStatement is used to set certain overriding flags for processing. The trace
option indicates that detailed trace information is to be recorded during the execution of
the rule-checking.

The verbose option indicates that all processing of embedded artifacts such as access
method definitions, object types definitions, copybooks, and application parameter def-
inition files should be expanded in full. Additionally, any component that supports a
verbose processing mode is expected to have this enabled.

The offline processing mode indicates that the application parameter configuration
is not to interact with the user, and if all parameters are successfully set then processing
will continue as normal. If for some reason the parameters cannot be satisfied by the
current values, then processing terminates with an error message indicating the interven-
tion required. If this option is not in effect, then the execution of verify is assumed
to be interactive and a user interface for application parameters is presented to the user.

The coverage processing option is a request to produce coverage statistics for the
rules that were applied, passed and failed. The report is produced once all the cases
have been processed.

The applyall processing mode attempts to apply all rules that are applicable to each
of the buffers. This default mode is to attempt to apply only the first rule which is
applicable to a buffer.

The deforder processing mode selects rules to apply in the order that they are defined
in the configuration file. The default mode is to attempt to check for rules applicable in
the weighted-tree optimised order. This option allows the order of rules to be checked
for applicability in an order defined by the user configuring the rule set.

options trace, verbose;

ParametersStatement

- parameters
�� ��- Identifier - :

����- String - ;
����-

The ParametersStatement String identifies an applparms library [13] definition file.
This file defines the parameters that need to be included in the defined global variables
when verify executes the configuration. The value of the Identifier is used to qualify
the variables defined in the given applparms definition file. There can be any number
of configuration files attached in this manner, each requiring their own ParametersState-
ment (note that an applparms configuration is intended to satisfy all the parameter
requirements of an application or solution instance, and hence considered normal that
there is only one applparms configuration for each verify configuration).

Note that all parameters introduced by a ParametersStatement have a type of string.

The following is an example of a ParametersStatement in which the applparms pa-
rameters defined in the CASATEST.apd configuration will be known to the verify
as global variables qualified by MyVars (for example, MyVars.CACHFeeCap):

Code Magus Limited 13 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

parameters MyVars : "CASATEST.apd";

SourceStatement

- source
�� ��- String - ;

����-

The SourceStatement binds the source file using the recio [1] supplied String as the
open spec string (this is the value obtained by resolving all environment variables and
concatenating adjacent strings). The open spec string must be suitable for opening and
reading the file in a sequential input manner and is the file that supplies the cases to be
filtered and tested.

There must be exactly one source-statement in the configuration file.

The following is an example of a SourceStatement in which the open spec string is
expected to be supplied by the environment variable SOURCE SPEC:

source ${SOURCE_SPEC};

FailedStatement

- failed
�� ��- String - ;

����-

The FailedStatement binds the failed file using the recio [1] supplied String as the
open spec string (this is the value obtained by resolving all environment variables and
concatenating adjacent strings). The open spec string must be suitable for opening and
writing the file in a sequential output manner and is the file to which all cases are written
that have passed filtering, have successfully located a rule, have had the rule applied, but
the rule determined that the case has failed.

There must be exactly one failed-statement in the configuration file.

The following is an example of the FailedStatement:

failed "binary(" ${FAILED_NAME} ",recfm=f,reclen=654,mode=wb)";

PassedStatement

- passed
�� ��- String - ;

����-

The PassedStatement binds the passed file using the recio [1] supplied String as
the open spec string (this is the value obtained by resolving all environment variables
and concatenating adjacent strings). The open spec string must be suitable for opening
and writing the file in a sequential output manner and is the file to which all cases are
written that have passed filtering, have successfully located a rule, have had the rule
applied, and the rule determined that the case has passed.

There must be exactly one passed-statement in the configuration file.

The following is an example of the PassedStatement:

Code Magus Limited 14 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

passed "binary(" ${PASSED_NAME} ",recfm=f,reclen=654,mode=wb)";

MissedStatement

- missed
�� ��- String - ;

����-

The MissedStatement binds the missed file using the recio [1] supplied String as
the open spec string (this is the value obtained by resolving all environment variables
and concatenating adjacent strings). The open spec string must be suitable for opening
and writing the file in a sequential output manner and is the file to which all cases are
written that have passed filtering, but have not been successful in locating a rule.

There must be exactly one missed-statement in the configuration file.

The following is an example of the MissedStatement:

missed "binary(" ${MISSED_NAME} ",recfm=f,reclen=654,mode=wb)";

TestedStatement

- tested
�� ��- String - ;

����-

The TestedStatement binds the tested file using the recio [1] supplied String as the
open spec string (this is the value obtained by resolving all environment variables and
concatenating adjacent strings). The open spec string must be suitable for opening and
writing the file in a sequential output manner and is the file to which all cases are written
that have passed filtering.

There must be at most one tested-statement in the configuration file.

The following is an example of the TestedStatement:

tested "binary(" ${TESTED_NAME} ",recfm=f,reclen=654,mode=wb)";

IgnoreStatement

- ignore
�� ��- String - ;

����-

The IgnoreStatement binds the ignore file using the recio [1] supplied String as the
open spec string (this is the value obtained by resolving all environment variables and
concatenating adjacent strings). The open spec string must be suitable for opening and
writing the file in a sequential output manner and is the file to which all cases are written
that have not passed filtering.

There must be at most one ignore-statement in the configuration file.

The following is an example of the IgnoreStatement:

ignore "binary(" ${IGNORE_NAME} ",recfm=f,reclen=654,mode=wb)";

Code Magus Limited 15 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

4.2.2 Configuration Evaluate Statement

The evaluate-statement is mandatory and is used to specify the meta-data binding to
the records of the source file; and which subset of these records are to be processed
by matching the records to the particular object type; and an optional predicate over
that record type that must be true in order for the record to be considered for testing.
This process of choosing which records in the input source file to process is termed
filtering in this document.

Evaluate

- EvaluateHeader - OptWhereClause - ;
����-

EvaluateHeader

- evaluate
�� ��- Identifier - :

����- Identifier -

The Identifier on the left of the colon is the name of the object types collection that
should be used. The full path name of this file is obtained by inserting the value of this
Identifier into the string specified by the PathType statement. The Identifier on the right
of the colon is the name of the object type within the object types file that should be used
for filtering the records of the source file. This Identifier is also used as the qualifier
of all the symbols defined by the chosen object type.

OptWhereClause

�
�- where

�� ��- Expression

�
�

-

Further filtering of the records is permitted using an optional where-clause to the Eval-
uate statement. If a where-clause is present, then the record passes filtering if it is of
the correct object type and the predicate evaluates to true. The where-clause predicate
is defined in terms of symbols over the selected object type and any global symbols that
have previously been defined in the configuration file.

The following is an example of the evaluate-statement using a where-clause. In this
example, the where-clause predicate refers to the predefined symbol source count
which is a counter of the number of source file records read. Given the previous ex-
ample PathTypeStatement, and assuming the environment variable TYPEHOME has the
value /home/testdata/CodeMagus/objtypes/", the object types file referred
to in the evaluate-statement would then be /home/testdata/CodeMagus/-
objtypes/JOINRECD.objtypes; and an object type called test case is ex-
pected to be defined in this file.

evaluate JOINRECD:test_case where source_count < 5;

Code Magus Limited 16 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

4.2.3 Configuration Definitions Sections

The remainder of the VerifyBody of the verify configuration file comprises defini-
tion sections of various types. The definition sections all influence the processing of
source cases file in various ways. The DefinitionSections may appear in any order,
but if a DefinitionSection refers to an element introduced by another DefinitionSection,
then that referring DefinitionSection must follow the defining DefinitionSection in the
verify configuration file.

DefinitionSections

- DefinitionSection�
�- DefinitionSections - DefinitionSection

�
�

-

DefinitionSection

- VariableDefinition�
�- ConditionDefinition

�- RuleDefinition

�- ProcedureDefinition

�- FunctionDefinition

�- EventDefinition

�- ReportDefinition

�
�
�
�
�
�
�

-

4.2.4 Variable Definition

A VariableDefinition introduces a global variable into to the verify configuration.

VariableDefinition

- variable
�� ��- Identifier - :

�����
��

�- ElementaryType - OptTitle - OptInitial - ;
����-

The variable named as the Identifier is defined at the point of processing the configu-
ration file where the VariableDefinition statement is found, and is available to be refer-

Code Magus Limited 17 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

enced in further DefinitionSections following the VariableDefinition. A global variable,
as with any variable within verify, is typed as an elementary typed item. Optionally,
a global variable may have a descriptive title (used in reporting) and an optional initial
value.

ElementaryType

- number
�� ���

�- string
�� ���- boolean
�� ��

�
�
�

-

There are only three elementary types: Numbers, Strings and Booleans. A type of
number indicates that the item may contain any decimal, fixed point or floating point
value. Numbers have 32 significant decimal digits. A String comprises a sequence of
characters of graphic characters. The encoding of the Strings is intended to be hidden
from the verify script code, and the actual encoding of the data is taken into account
by the object types definition file. A Boolean item is truth valued and may have one
of two values true or false (there are predefined variables true and false with fixed
values of true and false respectively).

OptTitle

�
�- title

�� ��- String

�
�

-

An optional title-clause of the defined global variable is intended to provide a fuller
explanation of the variable and is used in reporting and tracing.

OptInitial

�
�- initial

�� ��- Expression

�
�

-

An optional initial-clause is an expression over previously defined symbols with
values which is evaluated and assigned to the global variable at the point at which it
is defined. The expression must evaluate to a type that is the same as the type of the
variable.

The following is an example of a VariableDefinition:

variable GrossFeeAmount : number
title "Sum of all fees charged for"
initial 0.00;

Code Magus Limited 18 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

4.2.5 Condition Definition

A condition-definition defines a class within a dimension of the data. The class is
defined by a condition-predicate and all source file items belong to the class if the
condition-predicate evaluates to true in the context of that item.

ConditionDefinition

- condition
�� ��- Identifier - title

�� ��- String �
��

�- where
�� ��- Expression - ;

����-

The condition with a name indicated by the Identifier is defined at the point that the
condition-statement is encountered within the verify configuration. Associated
with a configuration is a title-clause which is expected to give a fuller explanation
of the condition and which can be used in reporting and tracing. The where-clause
Expression is a boolean valued predicate that determines class membership.

The following is an example of a ConditionDefinition:

condition Age_55_and_over
title "Account holder is 55 years or older"
where (test_case.JOIN_RECORD.JOIN_AGE_INDICATOR = "M")

or (test_case.JOIN_RECORD.JOIN_AGE_INDICATOR = "O");

4.2.6 Rule Definition

A rule defines the actions to be performed, when an item is determined to belong to
it, if a series of conditions are true for that item. It is the responsibility of the rule to
prepare for a verify event to call a case item a pass or fail; or to directly declare
the case item a pass or fail.

RuleDefinition

- rule
�� ��- Identifier - title

�� ��- String �
��

�- OptRequirements - CallProcedure - ;
����-

The name of a rule is supplied by the value corresponding to the Identifier. A rule
also has a title which is expected to have a fuller explanation of the rule and is used in
reporting and tracing. The OptRequirements lists the condition for the applicability of
the rule to the current source case item. A default rule, defined as the last rule in

Code Magus Limited 19 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

a verify configuration file, may be defined without any conditions and would act
as a catch all rule, applicable if no other rule applied to an item. Associated with every
rule is a CallProcedure-clause which provides the name and actual parameter list of
the procedure to call to evaluate (or initiate the evaluation) of the case item.

OptRequirements

�
�- requires

�� ��- (
����- IdentifierList -)

����
�
�

-

IdentifierList

- Identifier�
�- IdentifierList - ,

����- Identifier

�
�

-

Rules are tested against each item in the order that they appear in the verify configu-
ration file. And the first rule that has all of its Requirement conditions satisfied within
the context of the item becomes the rule applicable to the item. At most one rule is
applicable to an item.

The following is an example of a RuleDefinition:

rule should_charge_1486_CHARGE_UNPAID_ITEM_Dezign_Student
title "should_charge_1486_CHARGE_UNPAID_ITEM_Dezign_Student"
requires (Dezign_Student, TC_1486_CHARGE_UNPAID_ITEM,should_charge)
call set_fee(0.75);

4.2.7 Event Definition

There are various points within the verify processing where an implicit call to a
procedure is allowed. Where appropriate, these points in the processing are made
within the context of the current item being processed.

EventDefinition

- event
�� ��- EventType - OptReportReference - OptCallProcedure - ;

����-

An event does not have a name. Rather, an event has an EventType which indicates
the point in processing that indicates when the CallProcedure will be invoked. There
is a fixed list of EventTypes corresponding to specific points during the execution of
verify.

Code Magus Limited 20 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

EventType

- open
�� ���

�- close
�� ���- source
�� ���- tested
�� ���- passed
�� ���- failed
�� ���- missed
�� ���- ignore
�� ���- before
�� ���- verify
�� ��

�
�
�
�
�
�
�
�
�
�

-

• open: The CallProcedure defined for this event is invoked when the verify
configuration is successfully opened.

• close: The CallProcedure defined for this event is invoked when the verify
configuration is closed, provided that the configuration was successfully opened.

• source: The CallProcedure defined for this event is invoked whenever record is
read from the source file.

• tested: The CallProcedure defined for this event is invoked whenever a record
passes filtering. The context of the call includes the record just read.

• passed: The CallProcedure defined for this event is invoked whenever a record
is written to the passed file. The context of the call includes the record written.

• failed: The CallProcedure defined for this event is invoked whenever a record
is written to the failed file. The context of the call includes the record written.

• missed: The CallProcedure defined for this event is invoked whenever a record
is written to the missed file (that is when a rule cannot be located for the item).
The context of the call includes the record written.

• ignore: The CallProcedure defined for this event is invoked whenever a record
is written to the ignore file (that is, when the item fails the filtering).

• before: The CallProcedure defined for this event is invoked whenever a rule

Code Magus Limited 21 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

has been successfully identified for the case, but before the CallProcedure of the
rule has been invoked. The context of the call includes the current item.

• verify: The CallProcedure defined for this event is invoked whenever a rule
has been successfully identified for the case, and after the CallProcedure of the
rule has been invoked. The context of the call includes the current item.

4.2.8 Report Definition

OptReportReference

�
�- ReportReference

�
�

-

ReportReference

- report
�� ��- Identifier -

ReportReference-clauses are used in EventDefinitions in order to associate the event
with a ReportDefinition. During execution, if an event is associated with a report, then
the triggering of that report will cause a detail line to be added to the defined report. The
preparation and formatting of items for a report line when triggered by the occurrence of
an event takes place after the execution of the procedure identified in the CallProcedure-
clause, if present.

OptCallProcedure

�
�- CallProcedure

�
�

-

CallProcedure

- call
�� ��- Identifier - (

����- OptExpressionList -)
����-

CallProcedure-clauses are used in EventDefinitions and RuleDefinitions. The Identifier
in a CallProcedure-clause names a defined procedure; and the actual parameters
defined in a OptExpressionList are expected to evaluate to types matching that defined
procedure.

Code Magus Limited 22 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

ReportDefinition

- report
�� ��- Identifier - title

�� ��- String - file
�� ��- String �

��
�- ColumnDefinitions -

ColumnDefinitions

- ColumnDefinition�
�- ColumnDefinition - ColumnDefinitions

�
�

-

ColumnDefinition

- column
�� ��- Expression - title

�� ��- String -

A ReportDefinition-statement defines a single report in verify. Reports are defined
with a name and a title. The name is used within the verify configuration file to refer
to the report when indicating at which points content should be added to the report.
Content can be added to a report by associating a report with an event.

In addition to the report name and title, a recio open specification string is also as-
sociated with a report. This is used to define the file that the report will be written
to.

The content of a report is defined by the listing the columns that are to appear in the
report. This defines both the column headings as well as the report line details. Col-
umn headings are defined as literal Strings in the report column definition; and
the content of the report detail lines are defined as corresponding Expressions. These
Expressions are evaluated within the global scope of the verify configuration.

4.2.9 Procedure Definition

ProcedureDefinition

- ProcedureHeader - OptLocalVariableDefinitions - StatementBlock - ;
����-

ProcedureHeader

- procedure
�� ��- Identifier - (

����- OptFormalParameterList -)
����- ;

����-

FunctionDefinition

- FunctionHeader - OptLocalVariableDefinitions - StatementBlock - ;
����-

Code Magus Limited 23 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

FunctionHeader

- function
�� ��- Identifier - (

����- OptFormalParameterList -)
����- :

�����
��

�- ElementaryType - ;
����-

OptFormalParameterList

�
�- FormalParameterList

�
�

-

FormalParameterList

- FormalParameter�
�- FormalParameter - ,

����- FormalParameterList

�
�

-

FormalParameter

- Identifier - :
����- ElementaryType -

OptLocalVariableDefinitions

�
�- LocalVariableDefinitions

�
�

-

LocalVariableDefinitions

- LocalVariableDefinition�
�- LocalVariableDefinitions - LocalVariableDefinition

�
�

-

LocalVariableDefinition

- local
�� ��- Identifier - :

����- ElementaryType - ;
����-

StatementBlock

- begin
�� ��- StatementList - end

�� ��-

Code Magus Limited 24 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

StatementList

- Statement�
�- Statement - ;

����- StatementList

�
�

-

Statement

- AssignmentStatement�
�- IfStatement

�- ForStatement

�- RepeatStatement

�- WhileStatement

�- StatementBlock

�- PassStatement

�- FailStatement

�- SkipStatement

�- PrintStatement

�- DebugStatement

�- ReportStatement

�
�
�
�
�
�
�
�
�
�
�
�

-

AssignmentStatement

- Variable - :=
�� ��- Expression -

IfStatement

- if
�� ��- Expression - then

�� ��- Statement�
�- if

�� ��- Expression - then
�� ��- Statement - else

�� ��- Statement

�
�

-

Code Magus Limited 25 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

ForStatement

- for
�� ��- Identifier - :=

�� ��- Expression - IndexDirection - Expression �
��

�- do
�� ��- Statement -

IndexDirection

- to
�� ���

�- downto
�� ��

�
�

-

RepeatStatement

- repeat
�� ��- StatementList - until

�� ��- Expression -

WhileStatement

- while
�� ��- Expression - do

�� ��- Statement -

PassStatement

- pass
�� ��-

FailStatement

- fail
�� ��-

SkipStatement

- skip
�� ��-

PrintStatement

- print
�� ��- (

����- ExpressionList -)
����-

DebugStatement

- debug
�� ��- (

����- ExpressionList -)
����-

ReportStatement

- report
�� ��- Identifier -

The ReportStatement-statement refers to a ReportDefinition by name. The execution
of a Report-statement causes the columns of the associated report definition to be eval-

Code Magus Limited 26 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

uated and the resultant detail line to be added to the report file. Any number of Re-
port-statements and EventDefinitions may refer to the same report. A report line will
be generated for each Report-statement executed and for each triggered Event which
contains a reference to the report.

OptExpressionList

�
�- ExpressionList

�
�

-

ExpressionList

- Expression�
�- Expression - ,

����- ExpressionList

�
�

-

Refer to section 6 on page 48 for more information on expression syntax and built in
functions.

A Variable may be user defined or pre-defined. User defined variables are introduced
in the VariableDefinition, in FunctionHeader, in a ProcedureHeader, as a LocalVari-
able defined in a function or procedure, or as the result of a reference to an
objtypes configuration for describing external data.

There are also a number of predefined variables:

Name Type Description
true Boolean Always has the value true
false Boolean Always has the value false
source count Numeric A counter that is incremented each time that

the source scenario file is read. This is
whether or not the record is missed or ig-
nored. The counting starts at 1, and after
the last record is read from the source file,
this variable contains the total number of
records read.

continued on next page

Code Magus Limited 27 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

continued from previous page
Name Type Description

passed count Numeric A counter which is incremented each time
an applied rule passes. Initially the value
is zero. This value also keeps track of the
number of records written to the passed file.

failed count Numeric A counter which is incremented each time
an applied rule fails. Initially the value is
zero. This value also keeps track of the
number of records written to the failed file.

missed count Numeric A counter which is increment each time a
record is missed and written to the missed
scenarios file. Initially the value is zero.
This value also keeps track of the number
of records written to the missed file.

tested count Numeric A counter which is incremented each time a
record is considered for testing. Initially the
value is zero. This value also keep track of
the number of records written to the tested
file.

ignore count Numeric A counter which is incremented each time
a record is found for which no rule is ap-
plicable. This value also keeps track of the
number of records written to the ignore file.

current rule name String When a rule is found to be in context, ei-
ther within the body of a rule, or within the
scope of a before event, passed event,
or a failed event, this variable will have
the name of the rule in context. Outside
of this context, the variable will still be de-
fined, but will have a value indicating that
no rule is currently in context.

current rule title String When a rule is found to be in context, ei-
ther within the body of a rule, or within the
scope of a before event, passed event,
or a failed event, this variable will have
the title of the rule in context. Outside of
this context, the variable will still be de-
fined, but will have a value indicating that
no rule is currently in context.

continued on next page

Code Magus Limited 28 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

continued from previous page
Name Type Description

current rule procedure String When a rule is found to be in context, ei-
ther within the body of a rule, or within the
scope of a before event, passed event,
or failed event, this variable will have the
name of the procedure of the rule in context.
Outside of this context, the variable will still
be defined, but will have a value indicating
that no rule procedure name is currently in
context.

current rule parmvalues String When a rule is found to be in context, ei-
ther within the body of a rule, or within the
scope of a before event, passed event,
or failed event, this variable will have
the names of the formal parameters and the
values of the corresponding actual parame-
ters formatted as a string. Outside of this
context, the variable will still be defined,
but will have a value indicating that no rule
procedure parameter names and values cur-
rently in context.

diagnostic path String When a case is considered, a number of
conditions may be checked against the cur-
rent case. This process may or may not have
found a corresponding rule. This variable
is a trace variable which indicates the rule
chosen as well as any conditions that have
been checked against the current case. This
condition detail includes, with the condition
name, whether the condition was found to
be true or false for the current case.

continued on next page

Code Magus Limited 29 CML00061-01

4.2 Configuration File Body 4 VERIFY CONFIGURATION

continued from previous page
Name Type Description

diagnostic path true String When a case is considered, a number of
conditions may be checked against the cur-
rent case. This process may or may not have
found a corresponding rule. This variable
is a trace variable which indicates the rule
chosen as well as any conditions that have
been checked and satisfied against the cur-
rent case.

diagnostic path false String When a case is considered, a number of
conditions may be checked against the cur-
rent case. This process may or may not
have found a corresponding rule. This vari-
able is a trace variable which indicates the
rule chosen as well as any conditions that
have been checked and found not to be true
against the current case.

Table 1: Predefined Variables

Code Magus Limited 30 CML00061-01

5 EXAMPLES

5 Examples

5.1 Example 1

This example shows how to process a simplified transaction file as a set of scenarios for
rule checking. The transaction file is a plain text file read in using the text access
method and mapped by an object types definition file. Application parameters specify
two thresholds that are used to skip, fail or pass a scenario by comparing them to a
new (or current) balance calculated from the old balance and transaction amount of the
current scenario. For demonstration purposes, the transaction amount is simplistically
totalled (catering for negative amounts) into a current, savings and total amount and
printed at the end of the run.

Each of the following sections list the components of a verify run and explain how it
contributes to the run.

5.1.1 Verify script

This is the main shell script for this example and shows how to invoke verify. It calls the
script base dir.sh to set the environment variables that hold the default directory
names relative to the script. It performs three steps, which are all performed if no
parameter is passed to the script. If either of the letters [pwr] are supplied the script
will run the print, the weight training or the verify run only, all three of which are
explained below.

• Print the input file.
See section 5.1.6 on page 40 for more information and the print of the four input
records.

• Run verify in training mode to create the weighting file.
See section 5.1.7 on page 40 for more information and the output from a previous
run of this example.

• Run verify to process the input file.
See section 5.1.8 on page 43 for more information and the output from a previous
run of this example.

cat cmlvrfy_01.sh

#!/bin/bash
#
File: cmlvrfy_01.sh
This script runs a basic test of verify.
The use of unbuffer can be removed if you do not have a copy of it. It helps
in sending both stderr and stdout to the pipe for tee to process.
#
$Author: hayward $
$Date: 2018/02/13 18:04:29 $
$Id: cmlvrfy_01.sh,v 1.4 2018/02/13 18:04:29 hayward Exp $

Code Magus Limited 31 CML00061-01

5.1 Example 1 5 EXAMPLES

$Name: $
$Revision: 1.4 $
$State: Exp $
#
$Log: cmlvrfy_01.sh,v $
Revision 1.4 2018/02/13 18:04:29 hayward
Add all files for documentation to CVS.
#
Revision 1.3 2018/02/09 17:53:53 hayward
Pass the name of the base script
to itself when sourcing it so that
it does not use $1 from the main
script. This allows the base script
to also be sourced from a terminal
command line in order to run the
command under something like gdb.
#
Revision 1.2 2018/02/09 14:23:20 hayward
Remove --debug. This is not a usual
test parm.
#
Revision 1.1 2018/02/09 08:46:14 hayward
Add small test for documentation.
#
[[${DEBUG} == Y]] && set -x
typeset -r CVS=\
"\$Id: cmlvrfy_01.sh,v 1.4 2018/02/13 18:04:29 hayward Exp $"
printf "%s\n" "${CVS}"

. $(dirname $0)/base_dir.sh $(dirname $0)/base_dir.sh

if [[$1 == clean]]
then

rm -f ${DD}/CMLVRFY_01_OUT*.txt
rm -f ${RD}/CMLVRFY_01_OUT*.txt
rm -f ${RD}/CMLVRFY_01_OUT*.csv
rm -f ${RD}/CMLVRFY_01_failed.csv
rm -f ${CFD}/CMLVRFY_01.wcf
rm -f ${LD}/*_CMLVRFY_01.apl
rm -f CMLVRFY_01.udg
exit 0

fi

RUN=${1-:pwr}

if [[${RUN} =˜ p]]
then

cmlprint ${CMLPRINT_OPTS} \
-t ${OBJ}/accounts.objtypes \
"text(${DD}/CMLVRFY_01_SOURCE.txt,mode=r)" \
|& tee ${RD}/CMLVRFY_01_OUT_PRINT.txt

[[$? -ne 0]] && exit 16
fi

which cmlvrfy
if [[${RUN} =˜ w]]
then

unbuffer -p \
cmlvrfy ${CMLVRFY_OPTS} \

--config-file=${BASE}/configs/CMLVRFY_01.vfy \
--weight-file=${BASE}/configs/CMLVRFY_01.wcf \
--training \
2>&1 | tee ${RD}/CMLVRFY_01_OUT_WEIGHTS.txt

[[$? -ne 0]] && exit 16
fi

Code Magus Limited 32 CML00061-01

5.1 Example 1 5 EXAMPLES

if [[${RUN} =˜ r]]
then

unbuffer -p \
cmlvrfy ${CMLVRFY_OPTS} \

--coverage-report \
--config-file=${BASE}/configs/CMLVRFY_01.vfy \
--weight-file=${BASE}/configs/CMLVRFY_01.wcf \
--graph-file=CMLVRFY_01.udg \
|& tee ${RD}/CMLVRFY_01_OUT_VERIFY.txt

[[$? -ne 0]] && exit 16
fi

exit 0

#
File: base_dir.sh
This script sets various directories for the scripts that source it. This
means that the BASE directory name is only set in one place and any
maintenance that is required to this process to handle different shell
peculiarities only needs to be done once.
#
$Author: release $
$Date: 2018/02/09 18:04:48 $
$Id: base_dir.sh,v 1.4 2018/02/09 18:04:48 release Exp $
$Name: $
$Revision: 1.4 $
$State: Exp $
#
$Log: base_dir.sh,v $
Revision 1.4 2018/02/09 18:04:48 release
Correct AMDLIBS and AMDBINS locations.
#
Revision 1.3 2018/02/09 18:02:58 hayward
Make it stand alone within the build system.
#
Revision 1.2 2018/02/09 17:51:51 hayward
Make the script callable as a
sourced script from the command
line by passing its own name in
parameter 1.
#
#
##
Get full canonical path name to testdata
1. Get the relative path to the script
2. strip script name off to get just the script directory name
3. cd to the script directory and save the value of PWD to get the canonical
full path name of the script directory
4. strip off the scripts directory portion to get the base (testdata) of all
the UnixCommandLine test cases.
NB if this is sourced direct from the terminal then $0 is usually /bin/bash,
in that case pass the script name in as parm 1. That overides $0 below.
#
SCRIPTDIR=$(dirname ${1:-$0})
cd ${SCRIPTDIR}
SCBASE=${PWD}
cd - >/dev/null
export BASE=$(dirname ${SCBASE})
export VERIFY=$(dirname ${BASE})
export SOFTWARE=$(dirname ${VERIFY})
End of get full canonical path name to testdata
##

Set other variables
e.g. Data Directory (DD) and Control Directory (CD)
export SD=${SCBASE}

Code Magus Limited 33 CML00061-01

5.1 Example 1 5 EXAMPLES

export DD=${BASE}/data
export CD=${BASE}/data/control_files
export ED=${BASE}/etc
export LD=${BASE}/logs
export RD=${BASE}/reports
export CPB=${BASE}/copybooks
export OBJ=${BASE}/objtypes
export CFD=${BASE}/configs
export TEST_COPYBOOKS=${CPB}/

export CODEMAGUS_AMDBINS=${SOFTWARE}/build/bin/
export CODEMAGUS_AMDLIBS=${SOFTWARE}/build/lib/
export CODEMAGUS_AMDPATH=${SOFTWARE}/build/bin/%s.amd
export CODEMAGUS_AMDSUFDL=.so
export CODEMAGUS_AMDCATNAME=notUsed
export CODEMAGUS_AMDCATPATH=notUsed

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${CODEMAGUS_HOME}/lib

printf "\nRun %s\n\n" "$(showname)"

5.1.2 Verify Configuration

The configuration file is the driver of a verify run. It holds the input, output and report
file specifications; the conditions, rules and procedures that direct the verify logic and
the event specifications for taking action at specific events. Read the comments in the
configuration below for more information on the statements.
verify Accounts;

-- set all data directories and file names. The short environment variables
-- like ${DD} are set by the driving script and are all relative to the
-- scripts directory ie a sub directory of the parent directory of the
-- scripts directory.
set DATAHOME = ${DD} "/";
set TYPEHOME = ${OBJ} "/";
set CONFHOME = ${CFD} "/";
set REPTHOME = ${RD} "/";
set SOURCE_NAME = ${DATAHOME} "CMLVRFY_01_SOURCE.txt";
set TESTED_NAME = ${DATAHOME} "CMLVRFY_01_OUT_TESTED.txt";
set PASSED_NAME = ${DATAHOME} "CMLVRFY_01_OUT_PASSED.txt";
set FAILED_NAME = ${DATAHOME} "CMLVRFY_01_OUT_FAILED.txt";
set MISSED_NAME = ${DATAHOME} "CMLVRFY_01_OUT_MISSED.txt";
set IGNORE_NAME = ${DATAHOME} "CMLVRFY_01_OUT_IGNORE.txt";
set FAILED_CSV_NAME = ${REPTHOME} "CMLVRFY_01_OUT_FAILED.csv";

-- Set all input and output Recio open specifications.
set SOURCE_SPEC = "text(" ${SOURCE_NAME} ",mode=r)";
set TESTED_SPEC = "text(" ${TESTED_NAME} ",mode=w)";
set PASSED_SPEC = "text(" ${PASSED_NAME} ",mode=w)";
set FAILED_SPEC = "text(" ${FAILED_NAME} ",mode=w)";
set MISSED_SPEC = "text(" ${MISSED_NAME} ",mode=w)";
set IGNORE_SPEC = "text(" ${IGNORE_NAME} ",mode=w)";
set FAILED_CSV_SPEC = "text(" ${FAILED_CSV_NAME} ",mode=w)";

-- Set the objtypes path and any options.
path type ${TYPEHOME} "%s.objtypes";
options trace, verbose;

-- Identify the application parameters file.
parameters MyVars : ${CONFHOME} "CMLVRFY_01.apd";

Code Magus Limited 34 CML00061-01

5.1 Example 1 5 EXAMPLES

-- Specify Recio open string specifications for accessing input and output
-- files:
source ${SOURCE_SPEC};
passed ${PASSED_SPEC};
failed ${FAILED_SPEC};
missed ${MISSED_SPEC};
ignore ${IGNORE_SPEC};

-- Determine which object type from the object types definition to process.
-- This selects all current (CA) and saving (SA) accounts
evaluate accounts:account;

-- Declare global variables to calculate the total, CA and SA transaction
-- relative amount. The use of initial is for demonstration purposes only
variable total_CA_transactions : number

title "Sum of all CA accounts"
initial -100;

variable total_SA_transactions : number
title "Sum of all CA accounts"
initial 0;

variable total_transaction_amt : number
title "Sum of all transaction amounts"
;

variable minamt : number
title "Threshold under which to fail transactions"
;

variable maxamt : number
title "Threshold under which to skip transactions"
;

-- Define conditions that will drive the rules. Select CA and SA accounts as
-- distinct items. This shows how to use a where clause to further sub divide
-- the main type being evaluated.
condition current_account

title "Current Accounts"
where (account.ACCOUNT_RECORD.ACC_TYPE = "CA");

condition savings_account
title "Savings Accounts"
where (account.ACCOUNT_RECORD.ACC_TYPE = "SA");

-- Define the procedures to be run on certain events. The events and their
-- binding to a procedure are defined further down.

-- Print a message at start up of a rule check run.
procedure startup(message:string);

begin
print("################ Start of Test: ",message);
total_CA_transactions := 0;
total_transaction_amt := 0

end;

-- Print a message at the end of a rule check run. Also print the accumulated
-- totals.
procedure windup(message : string);

begin
print("################ End of Test: ",message);
print("################ Total CA Amount = ",total_CA_transactions);
print("################ Total SA Amount = ",total_SA_transactions);
print("################ Total Amount = ",total_transaction_amt)

end;

-- Print a message a the start of each scenario test.
procedure inittest();

local square : number;
begin

print("################ In Inittest")

Code Magus Limited 35 CML00061-01

5.1 Example 1 5 EXAMPLES

end;

-- Procedure validate is the main procedure that sums the transaction amounts
-- and decides if the record is passed, skipped or failed depending on the
-- value of the calculated new balance with respect to the min and max
-- thresholds held in the application parameteres.

procedure validate(message : string);
local last_balance : number;
local tran_amount : number;
local new_balance : number;
begin

print("################ In Validate - ",message);

-- Get the minimum and maximum account balance thresholds from the
-- application parameter settings. They are cast from string to number.
minamt := SysNumber(MyVars.minAmount);
maxamt := SysNumber(MyVars.maxAmount);

-- Extract the last balance and the transaction amount from the
-- transaction record and adjust for the sign.
last_balance := account.ACCOUNT_RECORD.ACC_LAST_BAL;
if account.ACCOUNT_RECORD.ACC_LAST_BAL_SIGN = ’-’ then

last_balance := last_balance * -1;
tran_amount := account.ACCOUNT_RECORD.ACC_TRAN_AMT;
if account.ACCOUNT_RECORD.ACC_TRAN_AMT_SIGN = ’-’ then

tran_amount := tran_amount * -1;

-- Accumulate the total transaction amount and the same for all current
-- and saving accounts
total_transaction_amt := total_transaction_amt+tran_amount;
if account.ACCOUNT_RECORD.ACC_TYPE = ’CA’ then

total_CA_transactions := total_CA_transactions+tran_amount;
if account.ACCOUNT_RECORD.ACC_TYPE = ’SA’ then

total_SA_transactions := total_SA_transactions+tran_amount;

-- Calculate the new balance and check it. If it falls below the
-- minimum the record is failed, if it falls below the maximum the
-- record is skipped, otherwise the record passes.
new_balance := last_balance - tran_amount;
if new_balance < minamt then
begin

print("################ Failing account: ",
account.ACCOUNT_RECORD.ACC_NUMBER,"(",
account.ACCOUNT_RECORD.ACC_TYPE,"), balance(",last_balance,
")-transamt(",tran_amount,")=newbalance(",new_balance,
")<fail_amount(",minamt,")");

fail
end;
if new_balance < maxamt then
begin

print("################ Skipping account: ",
account.ACCOUNT_RECORD.ACC_NUMBER,"(",
account.ACCOUNT_RECORD.ACC_TYPE,"), balance(",last_balance,
")-transamt(",tran_amount,")=newbalance(",new_balance,
")<skip_amount(",maxamt,")");

skip
end;

-- If the new calculated balance is greater than both the skip and fail
-- threshold then the record is passed.
print("################ PASSED account: ",

account.ACCOUNT_RECORD.ACC_NUMBER,"(",
account.ACCOUNT_RECORD.ACC_TYPE,"), balance(",last_balance,
")-transamt(",tran_amount,")=newbalance(",new_balance,
")>skip_amount(",maxamt,")");

Code Magus Limited 36 CML00061-01

5.1 Example 1 5 EXAMPLES

pass
end;

-- Print a message
procedure msg(message: string);

begin
print("################",message)

end;

-- select only current accounts
rule CA_ACCOUNTS

title "Check all CA accounts"
requires (current_account)
call msg("From CA_ACCOUNTS");

-- select on saving accounts.
rule SA_ACCOUNTS

title "Check all SA accounts"
requires (savings_account)
call msg("From SA_ACCOUNTS");

-- Generate a failed cases report.
report FailedCases

title "Report of all failed cases"
file ${FAILED_CSV_SPEC}
column account.ACCOUNT_RECORD.ACC_TYPE title "AccountType"
column account.ACCOUNT_RECORD.ACC_NUMBER title "AccountNumber"
column account.ACCOUNT_RECORD.ACC_LAST_BAL title "Balance"
column account.ACCOUNT_RECORD.ACC_TRAN_AMT title "TransactionAmount"
column (account.ACCOUNT_RECORD.ACC_LAST_BAL -

account.ACCOUNT_RECORD.ACC_TRAN_AMT) title "NewBalance"
column minamt title "FailThreshold"
column maxamt title "SkipThreshold";

-- Define the events that control the process flow. The main one is the
-- verify event which is run each time a rule selects a record.
event open call startup(${SOURCE_NAME});
event close call windup(${SOURCE_NAME});
event before call inittest();
event verify call validate("From Verify");
event failed report FailedCases;

end.

5.1.3 Verify Application Parameters

The application parameters configuration and the associated log of changes specifies
variables and their values that are specific to a single run of verify. If these values
were to never change, they could be hard coded in the verify configuration. In this
example the parameters minamt and maxamt can be adjusted each time. The user
is prompted to accept the current values or make changes and save the new ones. The
interface that allows the parameters to be changed is configurable and can be either a
command line interface or a graphical one. In both cases the text configuration file as
shown below defines the parameter definitions. Changes made in real time are stored
in the application parameter log and allow the user to revert back to older values at any
time. See CML00054-01 applparms: Application Parameters Library User Guide and
Reference Version 1[13] for more information.

Code Magus Limited 37 CML00061-01

5.1 Example 1 5 EXAMPLES

application CMLVRFY_01;
--
-- $Author: hayward $
-- $Date: 2018/02/09 08:46:14 $
-- $Id: CMLVRFY_01.apd,v 1.1 2018/02/09 08:46:14 hayward Exp $
-- $Name: $
-- $Revision: 1.1 $
-- $State: Exp $
--
-- $Log: CMLVRFY_01.apd,v $
-- Revision 1.1 2018/02/09 08:46:14 hayward
-- Add small test for documentation.
--

title "Inspect Accounts";
description

"This is a unit and regression test for verify ";

set LOGHOME = ${LD} "/";
set TODAY = ${DATE_YYYYMMDD};

store ${LOGHOME};

parameter minAmount
title "Balance minimum amount";
default "101.00";
description

"If the balance is less than this value "
"supplied here, then the item is failed.";

constraint "ˆ[0-9][0-9]*\.[0-9][0-9]$";
end

parameter maxAmount
title "Balance Max amount";
default "499.00";
description

"If the balance is less than this value "
"supplied here, then the item is skipped.";

constraint "ˆ[0-9][0-9]*\.[0-9][0-9]$";
end

end.

5.1.4 Object Types

The input file that verify processes the rules against is mapped by an object types con-
figuration and corresponding copy book layout for each record. The path type and
evaluate statements in the verify configuration identify the the object types configu-
ration fully qualified file name and the type to use when mapping each record. Records
that do not match the given type are automatically skipped. Below is the object types
for this example. The example evaluates the type account which is a super set of
CA account and SA account, which are the actual types this example processes.
path ${TEST_COPYBOOKS} "%s.cpy";
options ascii, endian_little;

type account
title "Any Account"
book ACCOUNTS map ACCOUNT_RECORD include ACCOUNT_RECORD

Code Magus Limited 38 CML00061-01

5.1 Example 1 5 EXAMPLES

;

type CA_account
title "Current Account"
book ACCOUNTS map ACCOUNT_RECORD include ACCOUNT_RECORD
when ACCOUNT_RECORD.ACC_TYPE = ’CA’

;

type SA_account
title "Savings Account"
book ACCOUNTS map ACCOUNT_RECORD include ACCOUNT_RECORD
when ACCOUNT_RECORD.ACC_TYPE = ’SA’

;

5.1.5 Copy Book

The copy book below is used in this example in order to map the record fields for use
by various statements in the verify configuration.

01 ACCOUNT-RECORD.
03 ACC-TYPE PIC x(2).
03 ACC-NUMBER PIC 9(10).
03 ACC-NAME PIC X(15).
03 ACC-LAST-BAL-SIGN PIC X.
03 ACC_LAST-BAL PIC 9(9)v99.
03 ACC-TRAN-AMT-SIGN PIC X.
03 ACC-TRAN-AMT PIC 9(9)v99.

Code Magus Limited 39 CML00061-01

5.1 Example 1 5 EXAMPLES

5.1.6 Verify Output Report: Code Magus Print

The first process performed by the script (section 5.1.1 on page 31) is to print the input
file using cmlprint. This allows the input file values to be inspected in order to
understand the verify processing later in the script. The output of this process is shown
below.

Code Magus Limited Filetools V3.0: build 2018-02-12-15.47.39
[cmlprint] $Id: CMLVRFY_01_OUT_PRINT.txt,v 1.1 2018/02/13 18:04:29 hayward Exp $
Copyright (c) 2001, 2002 by Stephen Donaldson. All rights reserved.
Copyright (c) 2003--2016 by Code Magus Limited. All rights reserved.
[Contact: stephen@codemagus.com].

Start of File = text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt,mode=r).
Using object types = /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/objtypes/accounts.objtypes.
Seq = 1, Length = 51
File = text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt,mode=r)
Type = CA_account
Title = Current Account

01 ACCOUNT_RECORD
03 ACC_TYPE = "CA"
03 ACC_NUMBER = 1000000001
03 ACC_NAME = "Day to Day "
03 ACC_LAST_BAL_SIGN = "-"
03 ACC_LAST_BAL = 000000101.01
03 ACC_TRAN_AMT_SIGN = "-"
03 ACC_TRAN_AMT = 000000050.00

Seq = 2, Length = 51
File = text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt,mode=r)
Type = SA_account
Title = Savings Account

01 ACCOUNT_RECORD
03 ACC_TYPE = "SA"
03 ACC_NUMBER = 1000000002
03 ACC_NAME = "Holiday fund "
03 ACC_LAST_BAL_SIGN = "+"
03 ACC_LAST_BAL = 000001151.01
03 ACC_TRAN_AMT_SIGN = "+"
03 ACC_TRAN_AMT = 000001050.00

Seq = 3, Length = 51
File = text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt,mode=r)
Type = SA_account
Title = Savings Account

01 ACCOUNT_RECORD
03 ACC_TYPE = "SA"
03 ACC_NUMBER = 1000000003
03 ACC_NAME = "Nest Egg "
03 ACC_LAST_BAL_SIGN = "+"
03 ACC_LAST_BAL = 000000201.01
03 ACC_TRAN_AMT_SIGN = "+"
03 ACC_TRAN_AMT = 000001050.00

Seq = 4, Length = 51
File = text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt,mode=r)
Type = CA_account
Title = Current Account

01 ACCOUNT_RECORD
03 ACC_TYPE = "CA"
03 ACC_NUMBER = 1000000001
03 ACC_NAME = "EveryDay "
03 ACC_LAST_BAL_SIGN = "+"
03 ACC_LAST_BAL = 000002101.01
03 ACC_TRAN_AMT_SIGN = "-"
03 ACC_TRAN_AMT = 000000050.00

text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt,mode=r): Input Records = 4.
text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt,mode=r): Formatted Records = 4.

5.1.7 Verify Output Report: Weights

The second process performed by the script (section 5.1.1 on page 31) is to run verify
in training mode in order to generate the weights file. This is a profiling of the current
input data that is used by the main verify run. The output from this process is shown
below.

Code Magus Limited Verify Rule Check System V1.1: build 2018-02-12-17.07.44
[cmlvrfy] $Id: CMLVRFY_01_OUT_WEIGHTS.txt,v 1.1 2018/02/13 18:04:29 hayward Exp $
Copyright (c) 2009--2013 by Code Magus Limited. All rights reserved.
[Contact: stephen@codemagus.com].

---Start of Condition Weight Data---

Opening weight condition file: (null)

---End of Condition Weight Data---

---Start of Test Configuration---

Opening Test Configuration: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs/CMLVRFY_01.vfy.

verify Accounts;

-- set all data directories and file names.
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data] set DATAHOME = ${DD} "/";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/objtypes] set TYPEHOME = ${OBJ} "/";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs] set CONFHOME = ${CFD} "/";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/reports] set REPTHOME = ${RD} "/";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/] set SOURCE_NAME = ${DATAHOME} "CMLVRFY_01_SOURCE.txt";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/] set TESTED_NAME = ${DATAHOME} "CMLVRFY_01_OUT_TESTED.txt";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/] set PASSED_NAME = ${DATAHOME} "CMLVRFY_01_OUT_PASSED.txt";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/] set FAILED_NAME = ${DATAHOME} "CMLVRFY_01_OUT_FAILED.txt";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/] set MISSED_NAME = ${DATAHOME} "CMLVRFY_01_OUT_MISSED.txt";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/] set IGNORE_NAME = ${DATAHOME} "CMLVRFY_01_OUT_IGNORE.txt";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/reports/] set FAILED_CSV_NAME = ${REPTHOME} "CMLVRFY_01_OUT_FAILED.csv";

-- Set all input and output Recio open specifications.
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt] set SOURCE_SPEC = "text(" ${SOURCE_NAME} ",mode=r)";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_TESTED.txt] set TESTED_SPEC = "text(" ${TESTED_NAME} ",mode=w)";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_PASSED.txt] set PASSED_SPEC = "text(" ${PASSED_NAME} ",mode=w)";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_FAILED.txt] set FAILED_SPEC = "text(" ${FAILED_NAME} ",mode=w)";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_MISSED.txt] set MISSED_SPEC = "text(" ${MISSED_NAME} ",mode=w)";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_IGNORE.txt] set IGNORE_SPEC = "text(" ${IGNORE_NAME} ",mode=w)";

Code Magus Limited 40 CML00061-01

5.1 Example 1 5 EXAMPLES

[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/reports/CMLVRFY_01_OUT_FAILED.csv] set FAILED_CSV_SPEC = "text(" ${FAILED_CSV_NAME} ",mode=w)";

-- Set the objtypes path and any options.
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/objtypes/] path type ${TYPEHOME} "%s.objtypes";

options trace, verbose;
options trace;

-- Identify the application parameters file.
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs/] parameters MyVars : ${CONFHOME} "CMLVRFY_01.apd";

---Start of Application Parameter Configuration---

Opening Application Parameter Configuration: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs/CMLVRFY_01.apd.
Prefix for variables in this configuration: MyVars.

---Start of Processing APPLICATION PARAMETERS Config /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs/CMLVRFY_01.apd---
application CMLVRFY_01;
--
-- $Author: hayward $
-- $Date: 2018/02/13 18:04:29 $
-- $Id: CMLVRFY_01_OUT_WEIGHTS.txt,v 1.1 2018/02/13 18:04:29 hayward Exp $
-- $Name: $
-- $Revision: 1.1 $
-- $State: Exp $
--
-- $Log: CMLVRFY_01_OUT_WEIGHTS.txt,v $
-- Revision 1.1 2018/02/13 18:04:29 hayward
-- Add all files for documentation to CVS.
--
-- Revision 1.1 2018/02/09 08:46:14 hayward
-- Add small test for documentation.
--

title "Inspect Accounts";
description

"This is a unit and regression test for verify ";

set LOGHOME = ${LD}[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/logs] "/";
set TODAY = ${DATE_YYYYMMDD}[=20180213];
store ${LOGHOME}[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/logs/];

parameter minAmount
title "Balance minimum amount";
default "101.00";
description

"If the balance is less than this value "
"supplied here, then the item is failed.";

constraint "ˆ[0-9][0-9]*\.[0-9][0-9]$";
end
parameter maxAmount

title "Balance Max amount";
default "499.00";
description

"If the balance is less than this value "
"supplied here, then the item is skipped.";

constraint "ˆ[0-9][0-9]*\.[0-9][0-9]$";
end

end.
Application Parameter Default Command Interface.
Use the Application Parameters Command interface to
update and review parameter values or apply values
from the log file. Use "help" for help on commands.

apui>---End of APPLICATION PARAMETERS Config---

exit---End of Application Parameter Configuration---

-- Set Recio specifications for the processing files:
[=text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt,mode=r)] source ${SOURCE_SPEC};
[=text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_PASSED.txt,mode=w)] passed ${PASSED_SPEC};
[=text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_FAILED.txt,mode=w)] failed ${FAILED_SPEC};
[=text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_MISSED.txt,mode=w)] missed ${MISSED_SPEC};
[=text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_IGNORE.txt,mode=w)] ignore ${IGNORE_SPEC};

-- Determine which object type from the object types to process.
-- This selects all current (CA) and saving (SA) accounts
evaluate accounts:account

---Start of Object Types---

Opening Object types: accounts.
File: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/objtypes/accounts.objtypes.

path ${TEST_COPYBOOKS}[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/copybooks/] "%s.cpy";
options ascii, endian_little;
type account

title "Any Account"
book ACCOUNTS map ACCOUNT_RECORD include ACCOUNT_RECORD

;
type CA_account

title "Current Account"
book ACCOUNTS map ACCOUNT_RECORD include ACCOUNT_RECORD
when ACCOUNT_RECORD.ACC_TYPE = ’CA’

;
type SA_account

title "Savings Account"
book ACCOUNTS map ACCOUNT_RECORD include ACCOUNT_RECORD
when ACCOUNT_RECORD.ACC_TYPE = ’SA’

;
01 ACCOUNT-RECORD. ->000001

03 ACC-TYPE PIC x(2). ->000002
03 ACC-NUMBER PIC 9(10). ->000003
03 ACC-NAME PIC X(15). ->000004
03 ACC-LAST-BAL-SIGN PIC X. ->000005
03 ACC_LAST-BAL PIC 9(9)v99. ->000006
03 ACC-TRAN-AMT-SIGN PIC X. ->000007
03 ACC-TRAN-AMT PIC 9(9)v99. ->000008

---End of Object Types---
;

-- Declare global variables to calculate the total, CA and SA transaction
-- relative amount.
variable total_CA_transactions : number

title "Sum of all CA accounts"
initial -100;

variable total_SA_transactions : number
title "Sum of all CA accounts"
initial 0;

variable total_transaction_amt : number
title "Sum of all transaction amounts"
;

variable minamt : number
title "Threshold under which to fail transactions"
;

variable maxamt : number
title "Threshold under which to skip transactions"
;

-- Define conditions that will drive the rules. Select CA and SA accounts as
-- distinct items.
condition current_account

title "Current Accounts"
where (account.ACCOUNT_RECORD.ACC_TYPE = "CA");

condition savings_account
title "Savings Accounts"
where (account.ACCOUNT_RECORD.ACC_TYPE = "SA");

-- Define the procedures to be run on certain events.
procedure startup(message:string);

begin
print("################ Start of Test: ",message);
total_CA_transactions := 0;
total_transaction_amt := 0

end;
procedure windup(message : string);

begin
print("################ End of Test: ",message);
print("################ Total CA Amount = ",total_CA_transactions);
print("################ Total SA Amount = ",total_SA_transactions);
print("################ Total Amount = ",total_transaction_amt)

end;
procedure inittest();

local square : number;
begin

print("################ In Inittest")
end;

-- Procedur validate is the main procedure that sums the transaction amounts
-- and decides if the record is passed, skipped or failed depending on the
-- value of the calculated new balance with respect to the min and max
-- thresholds held in the application parameteres.

procedure validate(message : string);
local last_balance : number;
local tran_amount : number;
local new_balance : number;
begin

Code Magus Limited 41 CML00061-01

5.1 Example 1 5 EXAMPLES

print("################ In Validate - ",message);

-- Get the minimum and maximum account balance thresholds from the
-- application parameter settings.
minamt := SysNumber(MyVars.minAmount);
maxamt := SysNumber(MyVars.maxAmount);

-- Extract the last balance and the transaction amount from the
-- transaction record and adjust for the sign.
last_balance := account.ACCOUNT_RECORD.ACC_LAST_BAL;
if account.ACCOUNT_RECORD.ACC_LAST_BAL_SIGN = ’-’ then

last_balance := last_balance * -1;
tran_amount := account.ACCOUNT_RECORD.ACC_TRAN_AMT;
if account.ACCOUNT_RECORD.ACC_TRAN_AMT_SIGN = ’-’ then

tran_amount := tran_amount * -1;
-- Calculate the total transaction amount and the same for all current
-- and saving accounts
total_transaction_amt := total_transaction_amt+tran_amount;
if account.ACCOUNT_RECORD.ACC_TYPE = ’CA’ then

total_CA_transactions := total_CA_transactions+tran_amount;
if account.ACCOUNT_RECORD.ACC_TYPE = ’SA’ then

total_SA_transactions := total_SA_transactions+tran_amount;
-- Calculate the new balance and check it. If it falls below the
-- minimum the record is failed, if it falls below the maximum the
-- record is skipped, otherwise the record passes.
new_balance := last_balance - tran_amount;
if new_balance < minamt then
begin

print("################ Failing account: ",
account.ACCOUNT_RECORD.ACC_NUMBER,"(",
account.ACCOUNT_RECORD.ACC_TYPE,"), balance(",last_balance,
")-transamt(",tran_amount,")=newbalance(",new_balance,
")<fail_amount(",minamt,")");

fail
end;
if new_balance < maxamt then
begin

print("################ Skipping account: ",
account.ACCOUNT_RECORD.ACC_NUMBER,"(",
account.ACCOUNT_RECORD.ACC_TYPE,"), balance(",last_balance,
")-transamt(",tran_amount,")=newbalance(",new_balance,
")<skip_amount(",maxamt,")");

skip
end;
-- If the new calculated balance is greater than both the skip and fail
-- threshold then the record is passed.
print("################ PASSED account: ",

account.ACCOUNT_RECORD.ACC_NUMBER,"(",
account.ACCOUNT_RECORD.ACC_TYPE,"), balance(",last_balance,
")-transamt(",tran_amount,")=newbalance(",new_balance,
")>skip_amount(",maxamt,")");

pass
end;

procedure msg(message: string);
begin

print("################",message)
end;

-- select only current accounts
rule CA_ACCOUNTS

title "Check all CA accounts"
requires (current_account)
call msg("From CA_ACCOUNTS");

-- select on saving accounts.
rule SA_ACCOUNTS

title "Check all SA accounts"
requires (savings_account)
call msg("From SA_ACCOUNTS");

-- Generate a failed cases report.
report FailedCases

title "Report of all failed cases"
[=text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/reports/CMLVRFY_01_OUT_FAILED.csv,mode=w)] file ${FAILED_CSV_SPEC}

column account.ACCOUNT_RECORD.ACC_TYPE title "AccountType"
column account.ACCOUNT_RECORD.ACC_NUMBER title "AccountNumber"
column account.ACCOUNT_RECORD.ACC_LAST_BAL title "Balance"
column account.ACCOUNT_RECORD.ACC_TRAN_AMT title "TransactionAmount"
column (account.ACCOUNT_RECORD.ACC_LAST_BAL -

account.ACCOUNT_RECORD.ACC_TRAN_AMT) title "NewBalance"
column minamt title "FailThreshold"

Start of Open Spec processing: text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/reports/CMLVRFY_01_OUT_FAILED.csv,mode=w)
Access Method: TEXT
Object Name: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/reports/CMLVRFY_01_OUT_FAILED.csv
Option String: mode=w
Start of Option String processing: mode=w

Start of Option String Scanning:
mode=w
access text(mode,texttype="LOCAL",delimiter="NA");

-- File: TEXT.amd
--
-- This file contains an access method definition which is used to read
-- and write local files of as a text stream. Support is provided for
-- various different text types including DOS, UNIX and MVS (or USS).
-- Any text type file can be read or written on any of the platforms
-- and if not specified it is defaulted to LOCAL (ie the platform the
-- Access Method is running on).
--
--
-- Author: Stephen R. Donaldson [stephen@codemagus.com].
--
-- Copyright (c) 2008 Code Magus Limited. All rights reserved.

-- $Author: hayward $
-- $Date: 2018/02/13 18:04:29 $
-- $Id: CMLVRFY_01_OUT_WEIGHTS.txt,v 1.1 2018/02/13 18:04:29 hayward Exp $
-- $Name: $
-- $Revision: 1.1 $
-- $State: Exp $
--
-- $Log: CMLVRFY_01_OUT_WEIGHTS.txt,v $
-- Revision 1.1 2018/02/13 18:04:29 hayward
-- Add all files for documentation to CVS.
--
-- Revision 1.11 2014/09/24 09:06:25 hayward
-- Add the ability to handle any delimiter
-- specified as a multiple of two hex digits.
--
-- Revision 1.10 2012/09/11 11:36:46 hayward
-- Make mode ’b’ independant of ’,type=record’
--
-- Revision 1.9 2012/08/28 18:00:10 hayward
-- Add the ability to add ’b’ to open mode
-- when using ’type=record’ as this is required
-- on record based systems like z390 in order to
-- write non local platform line endings.
--
-- Revision 1.8 2009/11/10 11:15:56 hayward
-- Allow text to use SKIP_INPUT and point method.
--
-- Revision 1.7 2009/05/27 08:52:39 hayward
-- Correct documentation.
--
-- Revision 1.6 2009/03/12 11:50:55 hayward
-- After testing on MVS and USS and reading the C runtime manual for
-- fwrite() and fread() it transpires that MVS and USS can be handled
-- in the same way. This requires using 0x15 as the line delimiter and
-- opening the file without "b,type=record". On USS the 0x15 is written
-- to the file (in the same manner as 0x0a on Unix) and on MVS it is
-- stripped at write time and a record boundary is inserted; whereas
-- on read a record boundary is replaced with a trailing 0x15.
-- This is the best outcome because now we can generate any platform
-- based file on any platform (not including ASCII/EBCDIC issues though).
--
-- Revision 1.5 2009/03/10 08:42:36 hayward
-- Major change to add texttype parameter to the AMD and how we read/write
-- text files.
--
-- Revision 1.4 2008/04/22 17:32:15 hayward
-- Add ability for callers to append to files by
-- adding ’a’ to the mode constraint.
--
-- Revision 1.3 2008/04/09 13:57:00 hayward
-- Fix path statement.
--
-- Revision 1.2 2008/03/31 22:30:45 stephen
-- Add usage of environment variables to AMD file
--
-- Revision 1.1 2008/03/20 14:56:25 stephen
-- Add new contents of recio text access method

Code Magus Limited 42 CML00061-01

5.1 Example 1 5 EXAMPLES

--
modes seq_input, seq_output, skip_input;

implements open;
implements close;
implements read;
implements write;
implements tell;
implements point;

describe mode as
"The mode is the open mode string which will be passed to the C Standard "
"I/O Library.";

describe texttype as
"The texttype parameter determines the line end delimiter for the text "
"being written. Either a common line end delimiter may be chosen, or "
"if required a custom line end can be specified.";

describe delimiter as
"The end of line delimiter is only specified when texttype=custom is used. "
"It must be a valid hex representation (even length of only [0-9a-fA-F]) "
"of the text line delimiter in the data being read or written.";

constrain mode as "ˆ[rwa]b\?\(,type=record\)\?$";
constrain texttype as "ˆ\(LOCAL\|DOS\|UNIX\|MVS\|CUSTOM\)$";
constrain delimiter as "ˆ\(NA\)\|\(\([0-9a-fA-F]\{2\}\)\+\)$";

path = ${CODEMAGUS_AMDLIBS}[=/home/hayward/mystuff/codemagus/software/build/lib/] "%s";
module = "textam" ${CODEMAGUS_AMDSUFDL}[=.so];
entry = textam_init;

end.
column maxamt title "SkipThreshold";

-- Define the events that control the process flow. The main one is the
-- verify event which is run each time a rule selects a record.

[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt] event open call startup(${SOURCE_NAME});
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt] event close call windup(${SOURCE_NAME});

event before call inittest();
event verify call validate("From Verify");
event failed report FailedCases;

end.
Start of Open Spec processing: text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt,mode=r)
Access Method: TEXT
Object Name: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt
Option String: mode=r
Start of Option String processing: mode=r

Start of Option String Scanning:
mode=r

Procedure startup called with parameters:
Parameter message = /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt.

################ Start of Test: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt

---End of Test Configuration---
Training run complete, weight file /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs/CMLVRFY_01.wcf created.

Procedure windup called with parameters:
Parameter message = /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt.

################ End of Test: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt
################ Total CA Amount = 0
################ Total SA Amount = 0
################ Total Amount = 0

5.1.8 Verify Output Report: Verify

The final process performed by the script (section 5.1.1 on page 31) is to run verify
against the input file. The output is shown below.

Code Magus Limited Verify Rule Check System V1.1: build 2018-02-12-17.07.44
[cmlvrfy] $Id: CMLVRFY_01_OUT_VERIFY.txt,v 1.1 2018/02/13 18:04:29 hayward Exp $
Copyright (c) 2009--2013 by Code Magus Limited. All rights reserved.
[Contact: stephen@codemagus.com].

---Start of Condition Weight Data---

Opening weight condition file: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs/CMLVRFY_01.wcf

-- Unloaded condition weights: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs/CMLVRFY_01.wcf
-- Unloaded at Tue Feb 13 18:03:21 2018
weight savings_account := 2;
weight current_account := 2;
-- End of condition weights: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs/CMLVRFY_01.wcf

---End of Condition Weight Data---

---Start of Test Configuration---

Opening Test Configuration: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs/CMLVRFY_01.vfy.

verify Accounts;

-- set all data directories and file names.
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data] set DATAHOME = ${DD} "/";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/objtypes] set TYPEHOME = ${OBJ} "/";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs] set CONFHOME = ${CFD} "/";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/reports] set REPTHOME = ${RD} "/";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/] set SOURCE_NAME = ${DATAHOME} "CMLVRFY_01_SOURCE.txt";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/] set TESTED_NAME = ${DATAHOME} "CMLVRFY_01_OUT_TESTED.txt";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/] set PASSED_NAME = ${DATAHOME} "CMLVRFY_01_OUT_PASSED.txt";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/] set FAILED_NAME = ${DATAHOME} "CMLVRFY_01_OUT_FAILED.txt";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/] set MISSED_NAME = ${DATAHOME} "CMLVRFY_01_OUT_MISSED.txt";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/] set IGNORE_NAME = ${DATAHOME} "CMLVRFY_01_OUT_IGNORE.txt";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/reports/] set FAILED_CSV_NAME = ${REPTHOME} "CMLVRFY_01_OUT_FAILED.csv";

-- Set all input and output Recio open specifications.
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt] set SOURCE_SPEC = "text(" ${SOURCE_NAME} ",mode=r)";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_TESTED.txt] set TESTED_SPEC = "text(" ${TESTED_NAME} ",mode=w)";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_PASSED.txt] set PASSED_SPEC = "text(" ${PASSED_NAME} ",mode=w)";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_FAILED.txt] set FAILED_SPEC = "text(" ${FAILED_NAME} ",mode=w)";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_MISSED.txt] set MISSED_SPEC = "text(" ${MISSED_NAME} ",mode=w)";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_IGNORE.txt] set IGNORE_SPEC = "text(" ${IGNORE_NAME} ",mode=w)";
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/reports/CMLVRFY_01_OUT_FAILED.csv] set FAILED_CSV_SPEC = "text(" ${FAILED_CSV_NAME} ",mode=w)";

-- Set the objtypes path and any options.
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/objtypes/] path type ${TYPEHOME} "%s.objtypes";

options trace, verbose;
options trace;

-- Identify the application parameters file.
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs/] parameters MyVars : ${CONFHOME} "CMLVRFY_01.apd";

---Start of Application Parameter Configuration---

Opening Application Parameter Configuration: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs/CMLVRFY_01.apd.
Prefix for variables in this configuration: MyVars.

---Start of Processing APPLICATION PARAMETERS Config /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/configs/CMLVRFY_01.apd---
application CMLVRFY_01;
--
-- $Author: hayward $
-- $Date: 2018/02/13 18:04:29 $
-- $Id: CMLVRFY_01_OUT_VERIFY.txt,v 1.1 2018/02/13 18:04:29 hayward Exp $
-- $Name: $
-- $Revision: 1.1 $
-- $State: Exp $
--
-- $Log: CMLVRFY_01_OUT_VERIFY.txt,v $
-- Revision 1.1 2018/02/13 18:04:29 hayward
-- Add all files for documentation to CVS.
--
-- Revision 1.1 2018/02/09 08:46:14 hayward
-- Add small test for documentation.
--

title "Inspect Accounts";
description

Code Magus Limited 43 CML00061-01

5.1 Example 1 5 EXAMPLES

"This is a unit and regression test for verify ";

set LOGHOME = ${LD}[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/logs] "/";
set TODAY = ${DATE_YYYYMMDD}[=20180213];
store ${LOGHOME}[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/logs/];

parameter minAmount
title "Balance minimum amount";
default "101.00";
description

"If the balance is less than this value "
"supplied here, then the item is failed.";

constraint "ˆ[0-9][0-9]*\.[0-9][0-9]$";
end
parameter maxAmount

title "Balance Max amount";
default "499.00";
description

"If the balance is less than this value "
"supplied here, then the item is skipped.";

constraint "ˆ[0-9][0-9]*\.[0-9][0-9]$";
end

end.
Application Parameter Default Command Interface.

Use the Application Parameters Command interface to
update and review parameter values or apply values
from the log file. Use "help" for help on commands.

apui>---End of APPLICATION PARAMETERS Config---

exit---End of Application Parameter Configuration---

-- Set Recio specifications for the processing files:
[=text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt,mode=r)] source ${SOURCE_SPEC};
[=text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_PASSED.txt,mode=w)] passed ${PASSED_SPEC};
[=text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_FAILED.txt,mode=w)] failed ${FAILED_SPEC};
[=text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_MISSED.txt,mode=w)] missed ${MISSED_SPEC};
[=text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_IGNORE.txt,mode=w)] ignore ${IGNORE_SPEC};

-- Determine which object type from the object types to process.
-- This selects all current (CA) and saving (SA) accounts
evaluate accounts:account

---Start of Object Types---

Opening Object types: accounts.
File: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/objtypes/accounts.objtypes.

path ${TEST_COPYBOOKS}[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/copybooks/] "%s.cpy";
options ascii, endian_little;
type account

title "Any Account"
book ACCOUNTS map ACCOUNT_RECORD include ACCOUNT_RECORD

;
type CA_account

title "Current Account"
book ACCOUNTS map ACCOUNT_RECORD include ACCOUNT_RECORD
when ACCOUNT_RECORD.ACC_TYPE = ’CA’

;
type SA_account

title "Savings Account"
book ACCOUNTS map ACCOUNT_RECORD include ACCOUNT_RECORD
when ACCOUNT_RECORD.ACC_TYPE = ’SA’

;
01 ACCOUNT-RECORD. ->000001

03 ACC-TYPE PIC x(2). ->000002
03 ACC-NUMBER PIC 9(10). ->000003
03 ACC-NAME PIC X(15). ->000004
03 ACC-LAST-BAL-SIGN PIC X. ->000005
03 ACC_LAST-BAL PIC 9(9)v99. ->000006
03 ACC-TRAN-AMT-SIGN PIC X. ->000007
03 ACC-TRAN-AMT PIC 9(9)v99. ->000008

---End of Object Types---
;

-- Declare global variables to calculate the total, CA and SA transaction
-- relative amount.
variable total_CA_transactions : number

title "Sum of all CA accounts"
initial -100;

variable total_SA_transactions : number
title "Sum of all CA accounts"
initial 0;

variable total_transaction_amt : number
title "Sum of all transaction amounts"
;

variable minamt : number
title "Threshold under which to fail transactions"
;

variable maxamt : number
title "Threshold under which to skip transactions"
;

-- Define conditions that will drive the rules. Select CA and SA accounts as
-- distinct items.
condition current_account

title "Current Accounts"
where (account.ACCOUNT_RECORD.ACC_TYPE = "CA");

condition savings_account
title "Savings Accounts"
where (account.ACCOUNT_RECORD.ACC_TYPE = "SA");

-- Define the procedures to be run on certain events.
procedure startup(message:string);

begin
print("################ Start of Test: ",message);
total_CA_transactions := 0;
total_transaction_amt := 0

end;
procedure windup(message : string);

begin
print("################ End of Test: ",message);
print("################ Total CA Amount = ",total_CA_transactions);
print("################ Total SA Amount = ",total_SA_transactions);
print("################ Total Amount = ",total_transaction_amt)

end;
procedure inittest();

local square : number;
begin

print("################ In Inittest")
end;

-- Procedur validate is the main procedure that sums the transaction amounts
-- and decides if the record is passed, skipped or failed depending on the
-- value of the calculated new balance with respect to the min and max
-- thresholds held in the application parameteres.

procedure validate(message : string);
local last_balance : number;
local tran_amount : number;
local new_balance : number;
begin

print("################ In Validate - ",message);

-- Get the minimum and maximum account balance thresholds from the
-- application parameter settings.
minamt := SysNumber(MyVars.minAmount);
maxamt := SysNumber(MyVars.maxAmount);

-- Extract the last balance and the transaction amount from the
-- transaction record and adjust for the sign.
last_balance := account.ACCOUNT_RECORD.ACC_LAST_BAL;
if account.ACCOUNT_RECORD.ACC_LAST_BAL_SIGN = ’-’ then

last_balance := last_balance * -1;
tran_amount := account.ACCOUNT_RECORD.ACC_TRAN_AMT;
if account.ACCOUNT_RECORD.ACC_TRAN_AMT_SIGN = ’-’ then

tran_amount := tran_amount * -1;
-- Calculate the total transaction amount and the same for all current
-- and saving accounts
total_transaction_amt := total_transaction_amt+tran_amount;
if account.ACCOUNT_RECORD.ACC_TYPE = ’CA’ then

total_CA_transactions := total_CA_transactions+tran_amount;
if account.ACCOUNT_RECORD.ACC_TYPE = ’SA’ then

total_SA_transactions := total_SA_transactions+tran_amount;
-- Calculate the new balance and check it. If it falls below the
-- minimum the record is failed, if it falls below the maximum the
-- record is skipped, otherwise the record passes.
new_balance := last_balance - tran_amount;
if new_balance < minamt then
begin

print("################ Failing account: ",
account.ACCOUNT_RECORD.ACC_NUMBER,"(",

Code Magus Limited 44 CML00061-01

5.1 Example 1 5 EXAMPLES

account.ACCOUNT_RECORD.ACC_TYPE,"), balance(",last_balance,
")-transamt(",tran_amount,")=newbalance(",new_balance,
")<fail_amount(",minamt,")");

fail
end;
if new_balance < maxamt then
begin

print("################ Skipping account: ",
account.ACCOUNT_RECORD.ACC_NUMBER,"(",
account.ACCOUNT_RECORD.ACC_TYPE,"), balance(",last_balance,
")-transamt(",tran_amount,")=newbalance(",new_balance,
")<skip_amount(",maxamt,")");

skip
end;
-- If the new calculated balance is greater than both the skip and fail
-- threshold then the record is passed.
print("################ PASSED account: ",

account.ACCOUNT_RECORD.ACC_NUMBER,"(",
account.ACCOUNT_RECORD.ACC_TYPE,"), balance(",last_balance,
")-transamt(",tran_amount,")=newbalance(",new_balance,
")>skip_amount(",maxamt,")");

pass
end;

procedure msg(message: string);
begin

print("################",message)
end;

-- select only current accounts
rule CA_ACCOUNTS

title "Check all CA accounts"
requires (current_account)
call msg("From CA_ACCOUNTS");

-- select on saving accounts.
rule SA_ACCOUNTS

title "Check all SA accounts"
requires (savings_account)
call msg("From SA_ACCOUNTS");

-- Generate a failed cases report.
report FailedCases

title "Report of all failed cases"
[=text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/reports/CMLVRFY_01_OUT_FAILED.csv,mode=w)] file ${FAILED_CSV_SPEC}

column account.ACCOUNT_RECORD.ACC_TYPE title "AccountType"
column account.ACCOUNT_RECORD.ACC_NUMBER title "AccountNumber"
column account.ACCOUNT_RECORD.ACC_LAST_BAL title "Balance"
column account.ACCOUNT_RECORD.ACC_TRAN_AMT title "TransactionAmount"
column (account.ACCOUNT_RECORD.ACC_LAST_BAL -

account.ACCOUNT_RECORD.ACC_TRAN_AMT) title "NewBalance"
column minamt title "FailThreshold"

Start of Open Spec processing: text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/reports/CMLVRFY_01_OUT_FAILED.csv,mode=w)
Access Method: TEXT
Object Name: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/reports/CMLVRFY_01_OUT_FAILED.csv
Option String: mode=w
Start of Option String processing: mode=w

Start of Option String Scanning:
mode=w
access text(mode,texttype="LOCAL",delimiter="NA");

-- File: TEXT.amd
--
-- This file contains an access method definition which is used to read
-- and write local files of as a text stream. Support is provided for
-- various different text types including DOS, UNIX and MVS (or USS).
-- Any text type file can be read or written on any of the platforms
-- and if not specified it is defaulted to LOCAL (ie the platform the
-- Access Method is running on).
--
--
-- Author: Stephen R. Donaldson [stephen@codemagus.com].
--
-- Copyright (c) 2008 Code Magus Limited. All rights reserved.

-- $Author: hayward $
-- $Date: 2018/02/13 18:04:29 $
-- $Id: CMLVRFY_01_OUT_VERIFY.txt,v 1.1 2018/02/13 18:04:29 hayward Exp $
-- $Name: $
-- $Revision: 1.1 $
-- $State: Exp $
--
-- $Log: CMLVRFY_01_OUT_VERIFY.txt,v $
-- Revision 1.1 2018/02/13 18:04:29 hayward
-- Add all files for documentation to CVS.
--
-- Revision 1.11 2014/09/24 09:06:25 hayward
-- Add the ability to handle any delimiter
-- specified as a multiple of two hex digits.
--
-- Revision 1.10 2012/09/11 11:36:46 hayward
-- Make mode ’b’ independant of ’,type=record’
--
-- Revision 1.9 2012/08/28 18:00:10 hayward
-- Add the ability to add ’b’ to open mode
-- when using ’type=record’ as this is required
-- on record based systems like z390 in order to
-- write non local platform line endings.
--
-- Revision 1.8 2009/11/10 11:15:56 hayward
-- Allow text to use SKIP_INPUT and point method.
--
-- Revision 1.7 2009/05/27 08:52:39 hayward
-- Correct documentation.
--
-- Revision 1.6 2009/03/12 11:50:55 hayward
-- After testing on MVS and USS and reading the C runtime manual for
-- fwrite() and fread() it transpires that MVS and USS can be handled
-- in the same way. This requires using 0x15 as the line delimiter and
-- opening the file without "b,type=record". On USS the 0x15 is written
-- to the file (in the same manner as 0x0a on Unix) and on MVS it is
-- stripped at write time and a record boundary is inserted; whereas
-- on read a record boundary is replaced with a trailing 0x15.
-- This is the best outcome because now we can generate any platform
-- based file on any platform (not including ASCII/EBCDIC issues though).
--
-- Revision 1.5 2009/03/10 08:42:36 hayward
-- Major change to add texttype parameter to the AMD and how we read/write
-- text files.
--
-- Revision 1.4 2008/04/22 17:32:15 hayward
-- Add ability for callers to append to files by
-- adding ’a’ to the mode constraint.
--
-- Revision 1.3 2008/04/09 13:57:00 hayward
-- Fix path statement.
--
-- Revision 1.2 2008/03/31 22:30:45 stephen
-- Add usage of environment variables to AMD file
--
-- Revision 1.1 2008/03/20 14:56:25 stephen
-- Add new contents of recio text access method
--
modes seq_input, seq_output, skip_input;

implements open;
implements close;
implements read;
implements write;
implements tell;
implements point;

describe mode as
"The mode is the open mode string which will be passed to the C Standard "
"I/O Library.";

describe texttype as
"The texttype parameter determines the line end delimiter for the text "
"being written. Either a common line end delimiter may be chosen, or "
"if required a custom line end can be specified.";

describe delimiter as
"The end of line delimiter is only specified when texttype=custom is used. "
"It must be a valid hex representation (even length of only [0-9a-fA-F]) "
"of the text line delimiter in the data being read or written.";

constrain mode as "ˆ[rwa]b\?\(,type=record\)\?$";
constrain texttype as "ˆ\(LOCAL\|DOS\|UNIX\|MVS\|CUSTOM\)$";
constrain delimiter as "ˆ\(NA\)\|\(\([0-9a-fA-F]\{2\}\)\+\)$";

path = ${CODEMAGUS_AMDLIBS}[=/home/hayward/mystuff/codemagus/software/build/lib/] "%s";
module = "textam" ${CODEMAGUS_AMDSUFDL}[=.so];
entry = textam_init;

end.

Code Magus Limited 45 CML00061-01

5.1 Example 1 5 EXAMPLES

column maxamt title "SkipThreshold";

-- Define the events that control the process flow. The main one is the
-- verify event which is run each time a rule selects a record.

[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt] event open call startup(${SOURCE_NAME});
[=/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt] event close call windup(${SOURCE_NAME});

event before call inittest();
event verify call validate("From Verify");
event failed report FailedCases;

end.
Start of Open Spec processing: text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt,mode=r)
Access Method: TEXT
Object Name: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt
Option String: mode=r
Start of Option String processing: mode=r

Start of Option String Scanning:
mode=r
Start of Open Spec processing: text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_PASSED.txt,mode=w)
Access Method: TEXT
Object Name: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_PASSED.txt
Option String: mode=w
Start of Option String processing: mode=w

Start of Option String Scanning:
mode=w
Start of Open Spec processing: text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_FAILED.txt,mode=w)
Access Method: TEXT
Object Name: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_FAILED.txt
Option String: mode=w
Start of Option String processing: mode=w

Start of Option String Scanning:
mode=w
Start of Open Spec processing: text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_MISSED.txt,mode=w)
Access Method: TEXT
Object Name: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_MISSED.txt
Option String: mode=w
Start of Option String processing: mode=w

Start of Option String Scanning:
mode=w
Start of Open Spec processing: text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_IGNORE.txt,mode=w)
Access Method: TEXT
Object Name: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_IGNORE.txt
Option String: mode=w
Start of Option String processing: mode=w

Start of Option String Scanning:
mode=w

Procedure startup called with parameters:
Parameter message = /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt.

################ Start of Test: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt

---End of Test Configuration---
Procedure inittest called without parameters.

################ In Inittest
Start of execution of procedure msg for rule CA_ACCOUNTS.

Procedure msg called with parameters:
Parameter message = From CA_ACCOUNTS.

################From CA_ACCOUNTS
End of execution of procedure msg for rule CA_ACCOUNTS, return code = 0.

Procedure validate called with parameters:
Parameter message = From Verify.

################ In Validate - From Verify
################ Failing account: 1000000001(CA), balance(-101.01)-transamt(-50.00)=newbalance(-51.01)<fail_amount(101.00)

Procedure inittest called without parameters.
################ In Inittest
Start of execution of procedure msg for rule SA_ACCOUNTS.

Procedure msg called with parameters:
Parameter message = From SA_ACCOUNTS.

################From SA_ACCOUNTS
End of execution of procedure msg for rule SA_ACCOUNTS, return code = 0.

Procedure validate called with parameters:
Parameter message = From Verify.

################ In Validate - From Verify
################ Skipping account: 1000000002(SA), balance(1151.01)-transamt(1050.00)=newbalance(101.01)<skip_amount(499.00)

Procedure inittest called without parameters.
################ In Inittest
Start of execution of procedure msg for rule SA_ACCOUNTS.

Procedure msg called with parameters:
Parameter message = From SA_ACCOUNTS.

################From SA_ACCOUNTS
End of execution of procedure msg for rule SA_ACCOUNTS, return code = 0.

Procedure validate called with parameters:
Parameter message = From Verify.

################ In Validate - From Verify
################ Failing account: 1000000003(SA), balance(201.01)-transamt(1050.00)=newbalance(-848.99)<fail_amount(101.00)

Procedure inittest called without parameters.
################ In Inittest
Start of execution of procedure msg for rule CA_ACCOUNTS.

Procedure msg called with parameters:
Parameter message = From CA_ACCOUNTS.

################From CA_ACCOUNTS
End of execution of procedure msg for rule CA_ACCOUNTS, return code = 0.

Procedure validate called with parameters:
Parameter message = From Verify.

################ In Validate - From Verify
################ PASSED account: 1000000001(CA), balance(2101.01)-transamt(-50.00)=newbalance(2151.01)>skip_amount(499.00)
----------------------------------- Start of Rule Coverage Report -----------------------------------

Rule - CA_ACCOUNTS
Title - Check all CA accounts

Applied to 2 scenarios.
Passed on 1 scenarios.
Failed on 1 scenarios.
Ignore on 0 scenarios.
Pass rate 50.00%.
Fail rate 50.00%.

Rule - SA_ACCOUNTS
Title - Check all SA accounts

Applied to 2 scenarios.
Passed on 0 scenarios.
Failed on 1 scenarios.
Ignore on 1 scenarios.
Pass rate 0.00%.
Fail rate 50.00%.

Global Statistics:
Total rules defined = 2.
Total rules applied = 2 (100.00%).
Total rule applications that passed = 1 (33.33%).
Total rule applications that failed = 2 (66.67%).

------------------------------------ End of Rule Coverage Report ------------------------------------
SOURCE:

text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt,mode=r)
Records processed = 4.

TESTED:
text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt,mode=r)
Records passed into test = 4.

IGNORE:
text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_IGNORE.txt,mode=w)
Records records bypassed = 1.

PASSED:
text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_PASSED.txt,mode=w)
Records passed test = 1.

FAILED:
text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_FAILED.txt,mode=w)
Records failed test = 2.

MISSED:
text(/store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_OUT_MISSED.txt,mode=w)
Records fell through test = 0.

Procedure windup called with parameters:
Parameter message = /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt.

################ End of Test: /store/home/hayward/mystuff/codemagus/software/verify/doc_examples/data/CMLVRFY_01_SOURCE.txt
################ Total CA Amount = -100.00
################ Total SA Amount = 2100.00
################ Total Amount = 2000.00

Code Magus Limited 46 CML00061-01

5.1 Example 1 5 EXAMPLES

5.1.9 Verify Data Files: Input

Below are the records as they appear in the input transaction file. These records are read
in by the recio access method, mapped by objtypes and delivered to verify one at a time.
CA1000000001Day to Day -00000010101-00000005000
SA1000000002Holiday fund +00000115101+00000105000
SA1000000003Nest Egg +00000020101+00000105000
CA1000000001EveryDay +00000210101-00000005000

5.1.10 Verify Data Files: Ignored Records

Records that are ignored by verify using the skip verb are written to the output file
specified by the ignore statement in the verify configuration. The records ignored by
this example are shown below.
SA1000000002Holiday fund +00000115101+00000105000

5.1.11 Verify Data Files: Failed Records

Records that are failed by verify using the fail verb are written to the output file
specified by the failed statement in the verify configuration. The records failed by
this example are shown below.
CA1000000001Day to Day -00000010101-00000005000
SA1000000003Nest Egg +00000020101+00000105000

5.1.12 Verify Data Files: Failed CSV Report

By using the event failed report <reportname>; statement a Comma Sep-
arated Values (CSV) report file can be written. It refers to the complex statement
report <reportname> where the access method open string for writing the file,
the report title and the columns of the CSV report are defined. The columns can be
any variable or expression using variables defined within the verify configuration. In
this example fields from the input file, variables from the application parameters and
calculated fields are output in order to show how this can be achieved.
AccountType˜AccountNumber˜Balance˜TransactionAmount˜NewBalance˜FailThreshold˜SkipThreshold
CA˜1000000001˜101.01˜50.00˜51.01˜101.00˜499.00
SA˜1000000003˜201.01˜1050.00˜-848.99˜101.00˜499.00

Code Magus Limited 47 CML00061-01

6 EXPRESSION EVALUATION

6 Expression Evaluation

6.1 Expression Overview

The lexical elements of an expression are the variables, literals, operators and other
character symbols used to form an expression. These lexical elements or tokens are
separated by white spaces. White spaces include sequences of the space character, new-
line character, the tab character and the linefeed character and their only function is to
separate or delimit the tokens.

The lexical elements are often single characters having their own apparent meaning,
but some are grouped together to form a word having a specific meaning. Included or
associated with each token may be an attribute value.

An expression, made up of the constituent tokens into the syntax and semantics of the
grammar, is then validated and evaluated by the expression evaluation library. The
evaluation of an expression produces a value that can then be used within the context of
the grammar of the specific Code Magus product within which it is specified.

Examples of expressions are:

1. 3+4

2. balance + 100

3. (account.balance >= 2000)

4. where (account.balance = 0)

5. where (account.balance < 0) and
(account.overdraft_facility = ’Y’)

6. SysString(account.balance)

6.2 Expression Grammar

6.2.1 Lexical Elements

The base elements are Literals and Identifiers.

• Numeric Literals

A Numeric literal is made up from an optional plus or minus sign followed by one
or more digits and optionally followed by a point and one or more digits.

Code Magus Limited 48 CML00061-01

6.2 Expression Grammar 6 EXPRESSION EVALUATION

Number Literal

�
�- +

�����- -
����

�
�
�

- 0-9
�� ���

�
�
�

�
�- .

����- 0-9
�� ���

�
�
�

�
�

-

• String Literals

String literals are made up from

– Any number of printable characters, except the enclosing character and a
newline, enclosed in either single or double quotes.

– An even number of hexadecimal digits enclosed in either single or double
quotes and prefixed with a lower or upper case X.

String Literal

- "
����- Printable characters except "

�� ��- "
�����

�- ’
����- Printable characters except ’

�� ��- ’
����

�
�

-

Hexadecimal Literal

- X
�����

�- x
����

�
�

- "
����- 0-9a-fA-F

�� ��- 0-9a-fA-F
�� ���

�
�
�
- "
�����

�- ’
����- 0-9a-fA-F

�� ��- 0-9a-fA-F
�� ���

�
�
�
- ’
����

�

�

-

• Identifiers

An identifier is used for both variable and function names. An identifier must
conform to:

– A lower or upper case alphabetic character followed by any number of un-
derscores, decimal digits and upper and lower case alphabetic characters.

– One or more decimal digits followed by an underscore and the above rule.

Code Magus Limited 49 CML00061-01

6.2 Expression Grammar 6 EXPRESSION EVALUATION

Identifier

�
� - 0-9

�� ���
�

�
�
-
����

�
�
- a-zA-Z
�� ��- 0-9a-zA-Z

�� ���
�

�
�

-

6.2.2 Syntactical Elements

Expressions may themselves be used as syntactical elements when forming a compound
expression.

The complete syntax of a compound expression is explained in the following sections
starting with the compound expression and working down to the lowest level syntactic
element.

CompoundExpression

- Expression -

Code Magus Limited 50 CML00061-01

6.2 Expression Grammar 6 EXPRESSION EVALUATION

Expression

- Expression - +
����- Expression�

�- Expression - -
����- Expression

�- Expression - *
����- Expression

�- Expression - /
����- Expression

�- Expression - mod
�� ��- Expression

�- Expression - and
�� ��- Expression

�- Expression - or
�� ��- Expression

�- Expression - <
����- Expression

�- Expression - >
����- Expression

�- Expression - =
����- Expression

�- Expression - <>
�� ��- Expression

�- Expression - >=
�� ��- Expression

�- Expression - <=
�� ��- Expression

�- Expression - like
�� ��- HomeString

�- -
����- Expression

�- +
����- Expression

�- not
�� ��- Expression

�- unique
�� ��- Expression

�- Expression - unless
�� ��- Expression

�- Primary

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-

The unless-operator conditionally returns the value of the right-hand operand, unless
there is an error evaluating the right-hand operand. In the case where the right-hand
operand fails to evaluate to a proper value, the value of the left-hand operand is returned

Code Magus Limited 51 CML00061-01

6.2 Expression Grammar 6 EXPRESSION EVALUATION

instead. The left-hand operand is always evaluated before the right-hand operand. If
the left-hand operand fails to evaluate to a proper value, then the result of the unless-
operator is a failure.

Primary

- Literal�
�- Variable

�- (
����- Expression -)

�����- Function - (
����- ExpressionList -)

�����- ifelse
�� ��- (

����- Expression - ,
����- Expression - ,

����- Expression -)
����

�
�
�
�
�

-

As a terminal in the syntax structure an expression or Primary is either a Literal or
a Variable, an Expression enclosed in parenthesis, a Function call reference, or the
conditional evaluation operator ifelse. A Literal may be a String Literal or a Number
Literal as described in Section 6.2.1 on page 48.

Where required by the encoding indicated or defaulted, characters representing the at-
tribute value of a string are changed to an alternate character set if the required character
set is not the same as the home character set being used. For example, on a machine in
which the characters are naturally represented using the EBCDIC character set encod-
ing (such as code page of 1047 or Latin 1/Open Systems), if the data being processed
is from a machine in which the characters are naturally represented using the ASCII
character set (such as ISO8859-1), then the characters in the String literal (assumed to
be represented in EBCDIC) will be translated to their corresponding ASCII characters
for processing. This does not apply to String literals that were represented as a sequence
of hexadecimal digits.

Both a Function (see Section 6.2.2 on page 54) and an Expression are made up of sub-
expressions, although eventually even they must terminate and resolve to a value.

A HomeString is a String Literal that may not be represented as a sequence of hexadec-
imal digits, but in which the encoding is left in the natural encoding of the machine
processing the data; that is the machine on which the expression string is being com-
piled. This is required for the right-hand operand of the like operator as this operator
translates the value of the left-hand operand into the local encoding when performing
pattern matching.

Operators, variables and functions are described in more detail below:

• Operators

In the context of the expression evaluation library, an operator is a symbol that

Code Magus Limited 52 CML00061-01

6.2 Expression Grammar 6 EXPRESSION EVALUATION

operates on or causes an action to be be performed on the constants and variables
adjacent to it. An operator is either

– Monadic
A monadic operator only operates on one value and usually employ either
prefix or postfix notation in that they either occur before or after the value
they operate on. The expression evaluation library uses only prefix monadic
operators.

– Dyadic
Dyadic operators operate on two values and employ infix notation in that
they operate on the the values that immediately precede and follow the op-
erator.

All operators return a value of a defined type which is the result of the computa-
tion. The type returned by an operator must be semantically consistent within the
context of the rest of the expression and the grammar it may be embedded in.

Table 2 on page 53 lists the allowed operators, their precedence, associativity,
arity (whether or not they are monadic or dyadic) and Type.

Operator Precedence Associativity Arity Type
like 1 non-assoc dyadic Relational
<> 1 left dyadic Relational
>= 1 left dyadic Relational
<= 1 left dyadic Relational
= 1 left dyadic Relational
> 1 left dyadic Relational
< 1 left dyadic Relational
+ 2 left dyadic Arithmetic
- 2 left dyadic Arithmetic
or 2 left dyadic Boolean
* 3 left dyadic Arithmetic
/ 3 left dyadic Arithmetic
div 3 left dyadic Arithmetic
and 3 left dyadic Boolean
mod 3 left dyadic Arithmetic
- 4 left monadic Arithmetic
not 4 left monadic Boolean

unique 4 left monadic boolean
unless 5 left dyadic boolean

Table 2: Operators: Precedence, Associativity, Arity and Type

• Variables

Code Magus Limited 53 CML00061-01

6.2 Expression Grammar 6 EXPRESSION EVALUATION

A variable is the name of a storage location that holds a value. Simply this name
is just an Identifier, but may be more than one level or node including an index.

Variable

- Variable Node�
�- IndexedString

�- Variable - .
����- Variable Node�

�- :
����- Variable Node

�
�

�
�
�

-

Variable Node

- Identifier �
�- [

����- Number -]
����

�
�

-

IndexedString

- [
����- String -]

����-

Examples of variable names are:

– Address - A single node variable with no indexing.

– Customer.Address - A two node variable.

– Customer.Address[1] - A two node variable where the Address por-
tion of the variable is the first of an array of items. Here this may be the first
line of an address.

– Customer[3].Address[1] - A two node variable that specifies the
third entry of the Customer array and the first entry of the Address array
within that Customer.

– Customer.Contact.HomePhone - A three node variable.

• Functions

A function is a special type of operator. It is specified by the function name, an
identifier, followed by a comma separated list of arguments enclosed in parenthe-
ses.

Function

- Identifier - (
����- ExpressionList -)

����-

Code Magus Limited 54 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

where an expression list is defined as

ExpressionList

- Expression�
� ,

�����
�
�

-

The function call is replaced with the result of the call and the result type must
be semantically consistent within the context of the rest of the expression and the
grammar it may be embedded in.

6.3 Built-in Functions

Functions for expression evaluation can be supplied by the application that uses it and
as such has a rich set of plug in functions that can not be documented here. However
there are functions that are common to all data processing and these are supplied by the
expression evaluation library and are described below.

6.3.1 SysStrLen, strlen, length

• Synopsis

– SysStrLen(string)

– strlen(string)

– length(string)

• Parameters

– Parameter 1 type: String.

• Description

The SysStrLne function (aliases strlen, length) returns the number of
characters in the string supplied as the first argument.

6.3.2 SysSubStr, substr

• Synopsis

– SysSubStr(string,start,length)

– substr(string,start,length)

• Parameters

Code Magus Limited 55 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

– Parameter 1 type: String.

– Parameter 2 type: Number.

– Parameter 3 type: Number.

– Return type: String.

• Description

The SysSubStr function (alias substr) returns a substring of the given string
from start for length characters or the remainder of string whichever is the short-
est.

The start must be greater than zero and the length must be zero or greater. If the
start position is past the end of the string then a NULL string is returned.

6.3.3 SysString, string

• Synopsis

– SysString(number)

– string(number)

• Parameters

– Parameter 1 type: Number.

– Return type: String.

• Description The SysString function (alias string) returns the value of num-
ber as a string.

6.3.4 SysNumber, number

• Synopsis

– SysNumber(string)

– number(string)

• Parameters

– Parameter 1 type: String.

– Return type: Number.

• Description The SysNumber function (alias number) returns a number equiv-
alent to the value of string.

Code Magus Limited 56 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

6.3.5 SysStrCat, strcat

• Synopsis

– SysStrCat(first,second)

– strcat(first,second)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: String.

• Description The SysStrCat function (alias strcat) returns a String which is
the concatenation of the two input strings first and second.

6.3.6 SysStrStr, strstr

• Synopsis

– SysStrStr(haystack,needle)

– strstr(haystack,needle)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: Number.

• Description The SysStrStr function (alias strstr) returns the start position
of needle within haystack. If needle does not occur in haystack then
zero is returned, otherwise the position (origin 1) is returned.

6.3.7 SysStrSpn, strspn

• Synopsis

– SysStrSpn(string,accept)

– strspn(string,accept)

• Parameters

– Parameter 1 type: String.

Code Magus Limited 57 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

– Parameter 2 type: String.

– Return type: Number.

• Description The SysStrSpn function (alias strspn) returns the number of
characters (bytes) in the initial segment of string which consist only of char-
acters from accept.

6.3.8 SysStrCspn, strcspn

• Synopsis

– SysStrCspn(string,reject)

– strcspn(string,reject)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: Number.

• Description The SysStrCspn function (alias strcspn) returns the number
of characters (bytes) in the initial segment of string which do not match any
character from reject.

6.3.9 SysStrPadRight, padright

• Synopsis

– SysStrPadRight(string,length,pad)

– padright(string,length,pad)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: Number.

– Parameter 3 type: String. Although the type is String, only the first character
is used as the pad character.

– Return type: String.

• Description The SysStrPadRight function (alias padright) returns a string
whose length is length and:

Code Magus Limited 58 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

– if length is greater than the length of string, is string padded on the
right with the pad character

– if length is less than the length of string, is string truncated from
the right to length.

– if length is equal to the length of string, is string.

6.3.10 SysStrPadLeft, padleft

• Synopsis

– SysStrPadLeft(string,length,pad)

– padleft(string,length,pad)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: Number.

– Parameter 3 type: String. Although the type is String, only the first character
is used as the pad character.

– Return type: String.

• Description The SysStrPadLeft function (alias padleft) returns a string
whose length is length and:

– if length is greater than the length of string, is string padded on the
left with the pad character

– if length is less than the length of string, is string truncated from
the left to length.

– if length is equal to the length of string, is string.

6.3.11 SysFmtCurrTime, strftimecurr

• Synopsis

– SysFmtCurrTime(format)

– strftimecurr(format)

• Parameters

– Parameter 1 type: String.

– Return type: String.

Code Magus Limited 59 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

• Description The SysFmtCurrTime function (alias strftimecurr) returns
a string that represents the current time as formatted according to format using
the C run-time strftime() function. Common values for format are:

– %c - The preferred date and time representation for the current locale.

– %d - The day of the month as a decimal number (range 01 to 31).

– %F - Equivalent to %Y-%m-%d (the ISO 8601 date format).

– %H - The hour as a decimal number using a 24-hour clock (range 00 to 23).

– %j - The day of the year as a decimal number (range 001 to 366).

– %m - The month as a decimal number (range 01 to 12).

– %M - The minute as a decimal number (range 00 to 59).

– %s - The number of seconds since the Epoch, 1970-01-01 00:00:00

– %S - The second as a decimal number (range 00 to 60, allows for leap sec-
onds).

– %T - The time in 24-hour notation (%H:%M:%S).

– %y - The year as a decimal number without a century (range 00 to 99).

– %Y - The year as a decimal number including the century.

– %% - A literal ’%’ character.

– Any other characters, not specified by strftime(), are copied verbatim
from format to the result string.

6.3.12 SysTime, time2epoch

• Synopsis

– SysTime(datetime,format)

– time2epoch(datetime,format)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String. Default “%Y%m%d”.

– Return type: Number.

• Description The SysTime function (alias time2epoch) returns the number
seconds since the Epoch calculated from datetime under the specification of
format.

Code Magus Limited 60 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

The seconds since the Epoch, when interpreted as an absolute time value, repre-
sents the number of seconds elapsed since the Epoch, 1970-01-01 00:00:00
+0000 (UTC).

datetime must be a string representation of a date and / or time and format
must be a date format string that exactly describes datetime using the format
characters as specified and used by the C function strptime().

Common options for the format are:

– %% - The % character.

– %c - The date and time representation for the current locale.

– %C - The century number (0-99).

– %d or %e - The day of month (1-31).

– %H - The hour (0-23).

– %I - The hour on a 12-hour clock (1-12).

– %j - The day number in the year (1-366).

– %m - The month number (1-12).

– %M - The minute (0-59).

– %p - The locale’s equivalent of AM or PM. (Note: there may be none.)

– %S - The second (0-60; 60 may occur for leap seconds; earlier also 61 was
allowed).

– %T - Equivalent to %H:%M:%S.

– %x - The date, using the locale’s date format.

– %X - The time, using the locale’s time format.

– %y - The year within century (0-99). When a century is not otherwise spec-
ified, values in the range 69-99 refer to years in the twentieth century (1969-
1999); values in the range 00-68 refer to years in the twenty-first century
(2000-2068).

– %Y - The year, including century (for example, 1991).

6.3.13 SysStrFTime, strftime

• Synopsis

– SysStrFTime(seconds,format)

– strftime(seconds,format)

Code Magus Limited 61 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

• Parameters

– Parameter 1 type: Number.

– Parameter 2 type: String.

– Return type: String.

• Description The SysStrFTime function (alias strftime) returns a string
date time representation of seconds formatted according to format as de-
scribed in the C runtime function strftime().

seconds is the number of seconds since the Epoch, which when interpreted as
an absolute time value, represents the number of seconds elapsed since the Epoch,
1970-01-01 00:00:00 +0000 (UTC).

format must be a date format string used to format the returned date time string.
For common values of format see section 6.3.11 on page 60

6.3.14 SysInTable, intable

• Synopsis

– SysInTable(table,search)

– intable(table,search)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: Boolean.

• Description

The SysInTable function (alias intable) returns a boolean TRUE if the
value of search is found in the table of items table, otherwise it returns a
boolean FALSE.

The value of table may be either the name of a text file in which each line is
one element of the table, or a comma (,) or semi-colon (;) delimited string of the
element values of the table.

• Examples

– SysInTable(”C:\customerNames.txt”,”Smith”) This will test whether the name
”Smith” occurs in the list of elements in the file C:\customerNames.txt.

Code Magus Limited 62 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

– SysInTable(”/tmp/customerNames.txt”,Record.Surname) This will test whether
the name identified by the object types[17] field Record.Surname occurs
in the list of elements in the file /tmp/customerNames.txt.

– SysInTable(”Smith,Jones,Right”,Record.Surname) This will test whether the
name identified by the object types[17] field Record.Surname occurs in
the list of elements in the comma separated list specified by the first argu-
ment.

6.3.15 SysStrCondPack, condpack

• Synopsis

– SysStrCondPack(String,String)

– condpack(String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: String.

• Description

The SysStrCondPack function (alias condpack) returns a string which is
conditionally formed by packing the string passed in the first parameter using
the second parameter as a possible replacement character. If the first parameter
matches the regular expression X"[0-9][A-F][a-f]" then the hexadecimal
characters are packed into the corresponding encoding character set (ASCII or
EBCDIC) characters. If the second parameter does not have a zero length, then the
first character of this parameter string is used to replace all the non-graphic/non-
printable characters of the packed character string. When the second parameter
string has a zero length, then the character ”?” is used as the replacement charac-
ter for non-graphic/non-printable characters in the return string.

If the first parameter string does not match the regular expression then the string
is considered to already be packed. In this case, the string is still checked if the
second parameter length is greater than one and the non-graphic/non-printable
characters are replaced by the first character of the second parameter string. When
the second parameter string has a zero length, then the character ”?” is used as
the replacement character for non-graphic/non-printable characters in the return
string.

• Examples

Code Magus Limited 63 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

– condpack(’X"414141"’,"?") on an ASCII based machine returns
the string AAA.

– condpack(’X"4141410000"’,"?") on an ASCII based machine re-
turns the string AAA??.

– condpack("4141410000","?") on an ASCII or EBCDIC based ma-
chine returns the string 4141410000.

6.3.16 TermAppStructDataGet, sfget

• Synopsis

– TermAppStructDataGet(String,String)

– sfget(String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: String.

• Description This function takes as the first parameter a value that should contain
a TermApp DE48-F0.16 Structured Data field and as the second parameter
the name of a field within the structured data. The function will return the value
of the named field as a string, if the name could not be found an empty string is
returned.

• Examples

– sfget(DE48 FIELD,"OSVer")
WhereDE48 FIELD=
219Postilion::MetaData275211FWSerialNbr11115SWRel111
19CommsType11118TermType11115OSVer11116SWHash111211F
01E201WSerialNbr22101000100000001002242315SWRel21314
4060219CommsType214INTERNAL MODEM 18TermType18EFTsma
rt15OSVer1982003607816SWHash18B4E1963A
returns the string 820036078

6.3.17 TermAppStructDataSet, sfset

• Synopsis

– TermAppStructDataSet(String,String,String)

Code Magus Limited 64 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

– sfset(String,String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Parameter 3 type: String.

– Return type: String.

• Description

• Examples

– sfset(DE48 FIELD,"FWSerialNbr",
"+----------LongerValue----------+")

Where DE48 FIELD is initially set to
219Postilion::MetaData275211FWSerialNbr11115SWRel111
19CommsType11118TermType11115OSVer11116SWHash111211F
WSerialNbr22101000100000001002242315SWRel2131401E201
4060219CommsType214INTERNAL MODEM18TermType18EFTsmar
t15OSVer1982003607816SWHash18B4E1963A

Will return the updated value of DE48 FIELD as
219Postilion::MetaData275211FWSerialNbr11115SWRel111
19CommsType11118TermType11115OSVer11116SWHash111211F
WSerialNbr233+----------LongerValue----------+15SWRe
l2131401E2014060219CommsType214INTERNAL MODEM18TermT
ype18EFTsmart15OSVer1982003607816SWHash18B4E1963A

6.3.18 gsub, replace

• Synopsis

– gsub(String,String,String,String)

– replace(String,String,String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Parameter 3 type: String.

– Parameter 4 type: String.

– Return type: String.

Code Magus Limited 65 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

• Description The function gsub() operates in much the same why as the awk
gsub function does. The four parameters are

1. Regular Expression (r) This parameter is a regular expression that should
match one or more portions of the input text (t).

2. Substitution String (s) This parameter is the replacement string

3. Text to operate on (t) This parameter is the original input text value.

4. How to operate (h) This parameter determines how many times the replace-
ment text is substituted.

How (h) can be either

– g or G which means replace all occurrences of matched text with the substi-
tution string.

– Numeric which means replace only that occurrence.

The regular expression (r) matches none, one or more portions of the input text (t)
and based on the value of how (h) gsub() returns the input string where one or all
of the matches are replaced with the substitution string (s).

• Examples

– gsub("a","bb",textfield,how) This example specifies to replace
the letter a with two letter b’s in textfield under the control of the vari-
able how.

Textfield value How Returned Value Description
abcdea12345a G bbbcdebb12345bb Each a is replaced by two b’s.
abcdea12345a 2 abcdebb12345a The second a is replaced by two b’s.
abcdea12345a 1 bbbcdea12345a The first a is replaced by two b’s.

Table 3: Effect of using gsub() to substitute text

– gsub("\([ˆ]\+\) \([ˆ]\+\)","\2 \1",textfield,how)
This example specifies to match two substrings that contain any character
except a space and that the first substring must be followed by a space fol-
lowed by the second substring. The substitution string specifies to replace
the whole matched value with the second matched substring followed by a
space followed by the first matched substring. In other words is swaps two
substrings around where the substrings do not contain a space and are sepa-
rated by one space. The number of times the replacement is done is governed
by the value of the variable how.

Code Magus Limited 66 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

Textfield value How Returned Value Description
ABC DEF G DEF ABC The order of the two strings is reversed.

A1 bA1 A2 BA2 G bA1 A1 BA2 A2 Each set of two strings are reversed.
A1 bA1 A2 BA2 2 A1 bA1 BA2 A2 Only the second set is reversed.

Table 4: Effect of using gsub() to substitute text

6.3.19 alias, lookup

• Synopsis

– alias(String,String)

– lookup(String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: String.

• Description This function uses the second parameter as a lookup key to extract
the associated value in the first parameter, which holds keyword value pairs. The
value corresponding to the matched key word is returned. The keyword value
pairs specified in the first parameter can either be a comma or semi-colon list of
keyword=value pairs or a file name containing one keyword=value pair
per line.

• Examples

– lookup("A=Alsatian,L=Labrador,S=Spaniel","L")
Will return the string ”Labrador”

– lookup("D:/lookup.txt","L")
will return the string ”Labrador” if the file D:/lookup.txt holds the
following:

A=Alsatian
L=Labrador
S=Spaniel

6.3.20 pstore set, psset

• Synopsis

– pstore set(String,String,String)

Code Magus Limited 67 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

– psset(String,String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Parameter 3 type: String.

– Return type: String.

• Description This function sets a value in a persistent store specified in parameter
1 using the variable name specified in parameter 2 and the value in parameter 3.
If an error occurs, for example not being able to connect to the persistent store
server, an error condition is returned.

The persistent store is identified by host:port where host is either an IP
address or a DNS name that can be looked up and port is the port number on
that host to which the persistent store server listens for incoming connections.
The port (and the colon) can be left out in which case the default port is used. The
default port is currently 60060.

• Examples

– pstore set("www.codemagus.com:60069","ServerName","theCloud")
Will set and return the value of the variable ServerName to theCloud
on the specified host.

– psset("www.codemagus.com:60069","ServerName","theCloud")
Will perform the same function as the example above.

6.3.21 pstore get, psget

• Synopsis

– pstore get(String,String)

– psget(String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: String.

• Description This function retrieves a value from a persistent store specified in pa-
rameter 1 using the variable name specified in parameter 2. If the named variable
is not found then an error condition is returned.

Code Magus Limited 68 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

The persistent store is identified by host:port where host is either an IP
address or a DNS name that can be looked up and port is the port number on
that host to which the persistent store server listens for incoming connections.
The port (and the colon) can be left out in which case the default port is used. The
default port is currently 60060.

• Examples

– pstore get("www.codemagus.com:60069","ServerName")
Will return the value of the variable ServerName from the specified host.

– psget("www.codemagus.com:60069","ServerName")
Will perform the same function as the example above.

6.3.22 pstore get cset, psget cset

• Synopsis

– pstore get cset(String,String,String)

– psget cset(String,String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Parameter 3 type: String.

– Return type: String.

• Description This function retrieves a value from a persistent store specified in pa-
rameter 1 using the variable name specified in parameter 2. If the named variable
is not found then it is created with the default value specified in parameter 3 and
that value is returned.

The persistent store is identified by host:port where host is either an IP
address or a DNS name that can be looked up and port is the port number on
that host to which the persistent store server listens for incoming connections.
The port (and the colon) can be left out in which case the default port is used. The
default port is currently 60060.

• Examples

– pstore get cset("www.codemagus.com","ServerName","theNet")
Will return the value of the variable ServerName from the specified host
(using the default port), but if it is not found will return and set it to theNet.

– psget cset("www.codemagus.com","ServerName","theNet")

Code Magus Limited 69 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

Will perform the same function as the example above.

6.3.23 pstore get incr, psget incr

• Synopsis

– pstore get incr(String,String)

– psget incr(String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: Number.

• Description This function retrieves a string representation of a numeric value
from a persistent store specified in parameter 1 using the variable name specified
in parameter 2. The numeric string is returned as a number type and is subse-
quently incremented by 1 and saved back to the persistent store as a numeric
string.

The persistent store is identified by host:port where host is either an IP
address or a DNS name that can be looked up and port is the port number on
that host to which the persistent store server listens for incoming connections.
The port (and the colon) can be left out in which case the default port is used. The
default port is currently 60060.

• Examples

– pstore get incr("www.codemagus.com:60069","Count")
If the value of Count on the persistent store is 3, then this function will
return 3 and store 4 back on the persistent store. If the variable Count is
not found an error condition is returned.

– psget incr("www.codemagus.com:60069","Count")
Will perform the same function as the example above.

6.3.24 pstore get incr cset, psget incr cset

• Synopsis

– pstore get incr cset(String,String,Number)

– psget incr cset(String,String,Number)

• Parameters

Code Magus Limited 70 CML00061-01

6.3 Built-in Functions 6 EXPRESSION EVALUATION

– Parameter 1 type: String.

– Parameter 2 type: String.

– Parameter 3 type: Number.

– Return type: Number.

• Description This function retrieves a string representation of a numeric value
from a persistent store specified in parameter 1 using the variable name specified
in parameter 2. The numeric string is returned as a number type and is subse-
quently incremented by 1 and saved back to the persistent store as a numeric
string. If the named variable is not found on the persistent store then the default
value specified in parameter 3 is returned and subsequently incremented and saved
on the persistent store.

The persistent store is identified by host:port where host is either an IP
address or a DNS name that can be looked up and port is the port number on
that host to which the persistent store server listens for incoming connections.
The port (and the colon) can be left out in which case the default port is used. The
default port is currently 60060.

• Examples

– pstore get incr cset("codemagus","Count",17)
If the value of Count on the persistent store is 3, then this function will
return 3 and store 4 back on the persistent store. If the variable Count is
not found then the value 17 is returned and 18 is saved to the persistent store
as the value of Count.

– psget incr cset("codemagus","Count",17)
Will perform the same function as the example above.

Code Magus Limited 71 CML00061-01

REFERENCES REFERENCES

References

[1] recio: Record Stream I/O Library Version 1. CML Document CML00001-01,
Code Magus Limited, July 2008. PDF.

[2] binary: Fixed and Variable Length Record Stream Access Method Version 1. CML
Document CML00005-01, Code Magus Limited, July 2008. PDF.

[3] dataset: Catalog Access Method Definitions Version 1. CML Document
CML00013-01, Code Magus Limited, July 2008. PDF.

[4] directory: Directory Record Stream Access Method Version 1. CML Document
CML00014-01, Code Magus Limited, July 2008. PDF.

[5] MVS: MVS Record Stream Access Method Version 1. CML Document
CML00016-01, Code Magus Limited, July 2008. PDF.

[6] remote: Remote Record Stream Access Method Version 1. CML Document
CML00022-01, Code Magus Limited, July 2008. PDF.

[7] standard: Standard Input And Output Using Recio Version 1. CML Document
CML00030-01, Code Magus Limited, July 2008. PDF.

[8] text: File Access Method Using POSIX Streams Version 1. CML Document
CML00031-01, Code Magus Limited, July 2008. PDF.

[9] image: DB2 Image Copy Reader Access Method Version 1. CML Document
CML00036-01, Code Magus Limited, July 2008. PDF.

[10] edit: Recio Edit Access Method Version 1. CML Document CML00047-01, Code
Magus Limited, June 2009. PDF.

[11] db2query: Recio DB2 Query Access Method Version 1. CML Document
CML00050-01, Code Magus Limited, November 2009. PDF.

[12] db2dclgen: Recio DB2 DCL Generator (DCLGN) Access Method Version 1.
CML Document CML00051-01, Code Magus Limited, November 2009. PDF.

[13] applparms: Application Parameters Library User Guide and Reference Version 1.
CML Document CML00054-01, Code Magus Limited, January 2010. PDF.

[14] null: Null Access Method Using Recio Version 1. CML Document CML00055-
01, Code Magus Limited, January 2009. PDF.

[15] source: Source Access Method Using Recio Version 1. CML Document
CML00056-01, Code Magus Limited, January 2009. PDF.

[16] debugapi: Debug API User Guide and Reference Version 1. CML Document
CML00060-01, Code Magus Limited, February 2010. PDF.

Code Magus Limited 72 CML00061-01

http://www.codemagus.com/documents/recio_CML0000101.pdf
http://www.codemagus.com/documents/binaryam_CML0000601.pdf
http://www.codemagus.com/documents/datasetam_CML0001301.pdf
http://www.codemagus.com/documents/diram_CML0001401.pdf
http://www.codemagus.com/documents/mvsam_CML0001601.pdf
http://www.codemagus.com/documents/remoteam_CML0002201.pdf
http://www.codemagus.com/documents/stdam_CML0003001.pdf
http://www.codemagus.com/documents/textam_CML0003101.pdf
http://www.codemagus.com/documents/imageam_CML0003601.pdf
http://www.codemagus.com/documents/editam_CML0004701.pdf
http://www.codemagus.com/documents/db2queryam_CML0005001.pdf
http://www.codemagus.com/documents/db2dclgnam_CML0005101.pdf
http://www.codemagus.com/documents/applparms_CML0005401.pdf
http://www.codemagus.com/documents/nullam_CML0005501.pdf
http://www.codemagus.com/documents/sourceam_CML0005601.pdf
http://www.codemagus.com/documents/debugapi_CML0006001.pdf

REFERENCES REFERENCES

[17] Code Magus Limited. objtypes: Configuring for Object Recognition, Generation
and Manipulation. CML Document CML00018-01, Code Magus Limited, July
2008. PDF.

Code Magus Limited 73 CML00061-01

http://www.codemagus.com/documents/objtpuref_CML0001801.pdf

	1 Introduction
	2 Verify Processing
	3 Processing
	4 verify Configuration
	4.1 Configuration File Header
	4.2 Configuration File Body
	4.2.1 Configuration Preamble
	4.2.2 Configuration Evaluate Statement
	4.2.3 Configuration Definitions Sections
	4.2.4 Variable Definition
	4.2.5 Condition Definition
	4.2.6 Rule Definition
	4.2.7 Event Definition
	4.2.8 Report Definition
	4.2.9 Procedure Definition

	5 Examples
	5.1 Example 1
	5.1.1 Verify script
	5.1.2 Verify Configuration
	5.1.3 Verify Application Parameters
	5.1.4 Object Types
	5.1.5 Copy Book
	5.1.6 Verify Output Report: Code Magus Print
	5.1.7 Verify Output Report: Weights
	5.1.8 Verify Output Report: Verify
	5.1.9 Verify Data Files: Input
	5.1.10 Verify Data Files: Ignored Records
	5.1.11 Verify Data Files: Failed Records
	5.1.12 Verify Data Files: Failed CSV Report

	6 Expression Evaluation
	6.1 Expression Overview
	6.2 Expression Grammar
	6.2.1 Lexical Elements
	6.2.2 Syntactical Elements

	6.3 Built-in Functions
	6.3.1 SysStrLen, strlen, length
	6.3.2 SysSubStr, substr
	6.3.3 SysString, string
	6.3.4 SysNumber, number
	6.3.5 SysStrCat, strcat
	6.3.6 SysStrStr, strstr
	6.3.7 SysStrSpn, strspn
	6.3.8 SysStrCspn, strcspn
	6.3.9 SysStrPadRight, padright
	6.3.10 SysStrPadLeft, padleft
	6.3.11 SysFmtCurrTime, strftimecurr
	6.3.12 SysTime, time2epoch
	6.3.13 SysStrFTime, strftime
	6.3.14 SysInTable, intable
	6.3.15 SysStrCondPack, condpack
	6.3.16 TermAppStructDataGet, sfget
	6.3.17 TermAppStructDataSet, sfset
	6.3.18 gsub, replace
	6.3.19 alias, lookup
	6.3.20 pstore_set, psset
	6.3.21 pstore_get, psget
	6.3.22 pstore_get_cset, psget_cset
	6.3.23 pstore_get_incr, psget_incr
	6.3.24 pstore_get_incr_cset, psget_incr_cset

