
cmlxpcpy: Cross Platform File Copy Version 2

CML00029-02

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road

Oxford, OX2 6EY, United Kingdom
www.codemagus.com

Copyright c© 2014 by Code Magus Limited
All rights reserved

August 16, 2016



CONTENTS CONTENTS

Contents
1 Introduction 2

2 Processing 3

3 Configuration 4

4 Processing Binary Data in Alpha-numeric Fields 12

5 Execution 13

A Example—Coverting Data From an ASCII Base to an EBCDIC Base 14

B Example—Conditionally Zapping Fields in the Input File 16

Code Magus Limited 1 CML00029-02



1 INTRODUCTION

1 Introduction

Program xpcfiles (SRDXPCPY on OS/390) copies files with multiple fixed format
records suitable for processing on one platform, so that they are suitable for processing
on other platforms. The files can contain records with multiple record formats, but the
content of any particular record must be able to distinguish the layout of that record.

In order for xpcfiles to be able to copy a file and convert its records, certain config-
uration data is required. This configuration data is kept in a separate file and contains
logic and references to copybooks. Within the configuration file there is a section for
each record type. These sections, referred to as layouts, assign a mapping to the
record by way of selecting 01-level items in a copybook together with an indication
of which fields in the copybooks are actually present in each case. In order to know
whether or not a particular layout applies to a record, a predicate is included in each
layout. This predicate is restricted in that it only comprises of a conjunction of equal-
ities and in-equalities in which fields are compared to literals.

Together with the layouts in the configuration file, there are input and output op-
tions which pertain to the source and target systems on which the file originates (input)
and on which the the file will be processed (output). These platforms may be different
to the platform on which the xpcfiles program ultimately executes.

Code Magus Limited 2 CML00029-02



2 PROCESSING

2 Processing

The program processes files by converting a single input file into a single output file
for each execution of the program. The input and output file are specified as Recio
Open Specification Strings [1]. Together with the names of the input and output files, a
configuration file is required. This configuration file contains the layout sections as
well as any options required to describe the input and output platforms as well as
any global options.

The configuration file is processed by parsing its contents and building the correspond-
ing data structures. Any copybooks referenced in the layout statements are also parsed,
once in the context of the input options and once in the context of the output op-
tions. The predicate is parsed into its abstract syntax tree and the literals are converted
into the concrete representations implied by the input options and the types of the
data items to which they are being compared (either for equality or in-equality). This
preparation of the literals expedites record identification when the input file is processed.

Code Magus Limited 3 CML00029-02



3 CONFIGURATION

3 Configuration

This section describes the configuration file’s statement syntax and meaning.

A configuration file contains the details of how to identify records in the file and the
options for the input and output processing platforms.

CrossPlatformConfig

- PreambleStatements - LayoutStatements -

There are two parts to the configuration CrossPlatformConfig: PreambleStatements
specify the various options; and the LayoutStatements describe various records and how
they are identified.

PreambleStatements

- PreambleStatement³

µ- PreambleStatements - PreambleStatement

¶

´

-

The preamble comprises a list of PreambleStatements. A PreambleStatement has one
of the following forms:

PreambleStatement

- path
¶
µ

³
´
- STRING - ;

¶
µ

³
´

³

µ- path
¶
µ

³
´
- book

¶
µ

³
´
- STRING - ;

¶
µ

³
´

µ- path
¶
µ

³
´
- default

¶
µ

³
´
- STRING - ;

¶
µ

³
´

µ- mode
¶
µ

³
´
- default

¶
µ

³
´
- STRING - ;

¶
µ

³
´

µ- global
¶
µ

³
´
- GlobalOptions - ;

¶
µ

³
´

µ- input
¶
µ

³
´
- DataOptions - ;

¶
µ

³
´

µ- output
¶
µ

³
´
- DataOptions - ;

¶
µ

³
´

¶

´

´

´

´

´

´

-

In addition to the various option statements, there are path statements and a mode
statement in the preamble section of the configuration file.

The path and path book statement supplies a string which is used as a mask for sup-
plying the full file name for the various copybooks that are referred to in the layout
statement. This string value is expected to contain a %s sprintf style sequence where
the supplied copybook name is edited into the string to form the full name of the copy-

Code Magus Limited 4 CML00029-02



3 CONFIGURATION

book file.

The path default statement supplies a string, also expected to contain a %s sprintf
style sequence where the file name of the default clause is used to form a full file
name of the file containing the default record for that particular layout.

The mode default statement supplies the open mode string that will be used to open
each of the default value files. This mode string has a default value of rb,type=record
and does not have to be specified if this default value will satisfy the requirements.

GlobalOptions

- GlobalOption³

µ- GlobalOptions - ,
¶
µ

³
´
- GlobalOption

¶

´

-

The GlobalOptions supplies the list of global options used for processing the file.

GlobalOption

- verbose
¶
µ

³
´

³

µ- lazy
¶
µ

³
´

µ- remdash
¶
µ

³
´

µ- omit fillers
¶
µ

³
´

µ- all values
¶
µ

³
´

¶

´

´

´

´

-

The verbose global option specifies that, for diagnostic purposes, additional messages
will be produced when parsing and preparing the configuration file and the copybooks
referred to in the configuration layout sections.

The lazy keyword specifies that the copybooks will only be loaded on demand. That
is when the fields contained within them are referenced. It does not pertain to the eval-
uation of the layout statements themselves.

The remdash global option indicates that all dashes in the field names in the copybooks
will be converted to underscore characters as the copybooks are parsed into symbols
table entries. This means that all reference to field names in the layout statements,
whether within the include or exclude statements, or within the predicate (i.e in
the when clause), must contain underscore characters rather than the dashes.

The omit fillers global option indicates that filler fields will not appear in the
records regardless of whether or not the parents of the filler fields are explicitly included
the layout.

Code Magus Limited 5 CML00029-02



3 CONFIGURATION

The all values global option indicates that the alpha-numeric fields should be pro-
cessed with all byte values being valid. The default behaviour without this option checks
each byte in the source field to make sure that it is a valid graphic character with respect
to the code EBCDIC Latin/1 Open Systems IBM Code Page 1047, or the ISO-8 IBM
Code Page 819 (depending on whether the ebcdic or ascii option is in effect). With-
out this option being in effect, if non-graphic characters appear in a field, then the field
is not converted and keeps the same values as in the source field (with the exception of
any required padding or truncating as determined by the respective field lengths). With
the all values option, the bytes of the field are not required to match the graphic
characters in the corresponding code pages and all values are translated if required.

The same values apply to the input and output options. In the discussion here, these
are grouped as DataOptions. The DataOptions appear as a list of comma-separated
values, each being a DataOption.

DataOptions

- DataOption³

µ- DataOptions - ,
¶
µ

³
´
- DataOption

¶

´

-

The various values of the DataOption describe some facet of the input or output
file’s data. Some of the DataOptions are mutually exclusive.

DataOption

- big endian
¶
µ

³
´

³

µ- little endian
¶
µ

³
´

µ- ascii
¶
µ

³
´

µ- ebcdic
¶
µ

³
´

¶

´

´

´

-

The options big endian and little endian are mutually exclusive in the same
input or output statement. This is true even if more than one input or more than
one output statement is used.

The big endian option on the input statement indicates that binary data on the plat-
form suitable for processing the input file is represented in the big-endian format. That
is, with the most significant byte of the binary value stored in the lowest byte address of
the binary field. The little endian option on the input statement indicates that
binary data on the platform suitable for processing the input file is represented in the
little-endian format. That is, with the most significant byte of the binary value stored in
the highest byte address of the binary field. Similarly, when the options bigendian
and littleendian are used on an output statement, they describe the format of

Code Magus Limited 6 CML00029-02



3 CONFIGURATION

the binary representation of the platform intended to process the converted file.

The options ascii and ebcdic are mutually exclusive in the same input or output
statement, even if more than one input or output statement is used.

When used on the input (resp. output) statement, the ascii option indicates the
character set collating sequence used to represent single byte display data on the plat-
form on which the data is intended to be produced (resp. consumed) is based on the
ASCII, or more accurately the ISO-8 character set with its graphics from ISO-8859-1.

Similarly, when used on the input (resp. output) statement, the ebcdic option
indicates the character set collating sequence used to represent single byte display data
on the platform on which the data is intended to be produced (resp. consumed) is based
on the EBCDIC character set using code page 1047, or Latin 1/Open Systems.

LayoutStatements

- LayoutStatement³

µ- LayoutStatements - LayoutStatement

¶

´

-

Following the preamble is a list of layout statements.

LayoutStatement

- layout
¶
µ

³
´
- STRING - book

¶
µ

³
´
- IDENTIFIER - OptReBook - map

¶
µ

³
´
- IDENTIFIER ³

´¶

µ- OptDefault - OptFilters - OptZapFields - OptCondition - ;
¶
µ

³
´

-

Each layout statement starts with the keyword layout and is terminated with the
“;” character. A single layout statement describes one record type in the file to be
copied. A record type is a single 01-level record item with a single combination of
fields under it. That is, a layout in which there is no ambiguity regarding the layout of
the fields of the record. The copybook containing this 01-level item is supplied by the
book clause and the 01-level item within the book is nominated using the map clause.

OptReBook

³

µ- rebook
¶
µ

³
´
- IDENTIFIER

¶

´

-

Optionally, the output layout of the record may be slightly different from the input layout
of the record. In order to specify this, an alternate output book can be specified. The
alternate output copybook is specified on the optional rebook clause.

Code Magus Limited 7 CML00029-02



3 CONFIGURATION

Optdefault

³

µ- default
¶
µ

³
´
- IDENTIFIER

¶

´

-

Optionally, the output of a particular layout can be overlaid with the contents of a file.
When the default clause is used, the contents of the first record of the indicated file
are used to overlay the output buffer after the buffer has been initialised with initial-
isation image byte value, and before the input buffer fields have been converted into
their output buffer values. The supplied identifier is edited into the value of the path
default string to form the file name of the file to be opened.

OptFilters

³

µ- Filters

¶

´

-

The Filters are also optional and when not specified, all the fields on the nominated
01-level item are assumed to be present in the record when the layout statement is
applicable (except for any filler items when the omit fillers option is in effect for
the input file).

When present, the Fillers modify the fields that are included as a result of selecting the
layout statement and the corresponding 01-level item.

Filters

- Filter³

µ- Filters - Filter

¶

´

-

Filter

- include
¶
µ

³
´
- Variable³

µ- exclude
¶
µ

³
´
- Variable

¶

´

-

There can be any number of Filters with each Filter clause starting with one of the
keywords include or exclude.

Filters are processed in the order in which they are listed in the layout statement.
A Filter names a variable within the selected 01-level item using a dotted notation to
fully qualify the item that should be included or excluded. For an include clause,
the named variable is assumed to be included in the record described by the layout
statement. The meaning of including a covering field is to include all elementary items

Code Magus Limited 8 CML00029-02



3 CONFIGURATION

under the covering field. For an exclude clause, the named variable is assumed to
be excluded from the record described by the layout statement even if the field was
explicitly included because of a prior include clause (directly or indirectly). And
the same is true of included fields which had been explicitly excluded by a previous
exclude clause (directly or indirectly).

The next section of the layout is an optional zap deck which must be applied to the
input and output buffers if the current layout applies to that buffer.

OptZapFields

³

µ- ZapFields

¶

´

-

ZapFields

- ZapField¶

µ

³

´

-

ZapField

- ZAP - INPUT³

µ- OUTPUT

¶

´

- Variable ³

µ- Condition

¶

´

- WITH - Literal -

During processing of the input file, once a layout is determined to be applicable to an
input record, and before any fields are moved from the input buffer to the output buffer,
any applicable INPUT zaps are applied to the input buffer. The zaps are determined
to be applicable if the predicate specified by the Condition evaluates to true over the
input buffer. If the predicate is not present, then the update is applied to the input buffer
unconditionally for the layout in which it is defined.

If there are any output buffer zaps, then these are applied to the output buffer once the
fields from the input record have been moved to the output buffer.

Following the Filters in the layout statement is an optional predicate which, when
it evaluates to true, indicates that the layout is applicable to the current record. The
predicate is introduced with the when clause and comprises of a single equality or in-
equality or a conjunction of equalities and/or in-equalities. Each equality or in-equality
must compare a Variable to a Literal.

If the predicate is not provided, then it behaves as though one is present which always
evaluates to true. In order to provide a default layout without a predicate in the same
configuration with other layouts which do contain when clauses make sure the default
layout is the first layout in the configuration file.

Code Magus Limited 9 CML00029-02



3 CONFIGURATION

OptCondition

³

µ- when
¶
µ

³
´
- Condition

¶

´

-

Condition

- FieldCompare³

µ- Condition - and
¶
µ

³
´
- FieldCompare

¶

´

-

FieldCompare

- Variable - =
¶
µ

³
´
- Literal³

µ- Literal - =
¶
µ

³
´
- Variable

µ- Variable - <>
¶
µ

³
´
- Literal

µ- Literal - <>
¶
µ

³
´
- Variable

¶

´

´

´

-

Literal

- STRING³

µ- NUMBER

µ- HSTRING

¶

´

´

-

A Literal may be a string, number or a hexadecimal string. A string is a sequence of
printable characters enclosed in apostrophes or quotation marks. A string delimited
by apostrophes cannot contain apostrophes and a string delimited by quotation marks
cannot contain quotation marks. If such string values are required, or if non-printable
characters are to be included in the string, then the hexadecimal format of the string
must be used.

A hexadecimal string is represented by a literal of the form:

HSTRING

- X
¶
µ

³
´

³

µ- x
¶
µ

³
´

¶

´

- ‘
¶
µ

³
´
- HexadecimalDigits - ‘

¶
µ

³
´

³

µ- "
¶
µ

³
´
- HexadecimalDigits - "

¶
µ

³
´

¶

´

-

Where HexadecimalDigits is a sequence of an even number of HexadecimalDigit digits:
0 . . .9, A or a . . .F or f.

Code Magus Limited 10 CML00029-02



3 CONFIGURATION

A number is a sequence of digits preceded by an optional “+” or “-” sign and with an
optional decimal point. At least one digit is required and if the decimal point is used,
then at least one digit must precede the decimal point and at least one digit must follow
the decimal point.

Variable

- IDENTIFIER³

µ- Variable - .
¶
µ

³
´
- IDENTIFIER

¶

´

-

Wherever a Variable can appear, it must fully qualify the item starting from the 01-level
under which the Variable appears. If the Variable is an indexed item, then the full set of
index values required to index the item must be present. An index to an item is specified
as a comma-separated list of integers in parentheses which must follow the Variable
name.

Code Magus Limited 11 CML00029-02



4 PROCESSING BINARY DATA IN ALPHA-NUMERIC FIELDS

4 Processing Binary Data in Alpha-numeric Fields

Not all alpha-numeric items contain data that is required to be graphic or to contain
graphic characters. Such items might contain a bit map, graphic image, or special values
that indicate the same condition independently of the encoding scheme of the hosting
platform. An example of the latter is a trailer record where the key or record type value
uses high values to indicate a trailer record. There are two means of indicating that
such a field should be excluded from translation. The first method is an extension of
the underlying COBOL grammar, this augments the type of the field to indicate that
item does not have an exposed collating sequence and uses the phrase COLLATING
IS HIDDEN as shown in the following example:

01 TRAILER-RECORD.
05 TRL-RECORD-TYPE PIC X(02) COLLATING IS HIDDEN.
05 FILLER PIC X(392).

However, this method makes the copybook unsuitable for a COBOL compiler, and so an
alternative method of applying the attribute to the type of field is to place a specially for-
matted comment in the copybook. The downside of this is that should there be a syntax
error in the comment, then it cannot be detected as the comment may be interpreted as a
normal comment. The specific structured comment is one that starts with attribute
set as in the following example:

01 TRAILER-RECORD.
05 TRL-RECORD-TYPE PIC X(02).

*attribute set HDR-RECORD-TYPE["TRANSLATE"] = "NO".
05 FILLER PIC X(392).

Code Magus Limited 12 CML00029-02



5 EXECUTION

5 Execution

On UNIX and Windows based systems the command runs under a shell with the com-
mand being entered either in a script file or at the command prompt. On OS/390 (where
the program is called SRDXPCPY) the command can be executed as a batch program
or under IKJEFT01 as a command processor. Regardless of where the command is
executed, the program is invoked in a similar manner and with the same command line
arguments available.

• -c, --config-file=<config-file>

Name of layout configuration file (mandatory)

• -i, --input-spec=<access>(<object>[,<options>])

Input stream open spec string (mandatory)

• -o, --output-spec=<access>(<object>[,<options>])

Output stream open spec string (mandatory)

• -m, --output-record-length=<output-record-length>

Record length to assumed for output file

• -b, --init-image=0x00|<init byte>

Byte value to initialiase buffer with

• -w, --warn-mode

Warn mode processing for some errors

• -x, --warn-max=20|<max>

Maximum warnings before suppressing messages

• -v, --verbose

Verbose printing during processing

• -?, --help

Show this help message

• --usage

Display brief usage message

Code Magus Limited 13 CML00029-02



A EXAMPLE—COVERTING DATA FROM AN ASCII BASE TO AN EBCDIC
BASE

A Example—Coverting Data From an ASCII Base to
an EBCDIC Base

This section demonstrate a simple example. Below is a configuration file which can be
used to copy files suitable for processing on a little endian binary representation, ASCII
based system to files suitable for processing on a big endian EBCDIC based system.
The file contains two record types (“Sample Record A” and “Sample Record
B”). The two different records are distinguishable by the value of the record type fields
(A-RECORD-TYPE of record A-SAMPLE-RECORD and B-RECORD-TYPE of B-
-SAMPLE-RECORD).

# File: asc2ebc.conf
#
# This file is the configuration file for testing the
# xpcfiles program.
#
path "/home/stephen/xpcfiles.test/%s.cbb";

global lazy, verbose, omit_fillers;
input little_endian, ascii;
output big_endian, ebcdic;

layout "Sample Record A" book sample map A-SAMPLE-RECORD
include A-SAMPLE-RECORD

when A-SAMPLE-RECORD.A-RECORD-TYPE = "A";

layout "Sample Record B" book sample map B-SAMPLE-RECORD
include B-SAMPLE-RECORD

when B-SAMPLE-RECORD.B-RECORD-TYPE = "B";

In this example, the copybook referred to would be called sample.cbb and would
have the fully qualified path name of:

/home/stephen/xpcfiles.test/sample.cbb

and could look something like:

* File: sample.cbb

*
* This is a sample copy book for testing the xpcfiles program.

*
01 A-SAMPLE-RECORD.

03 A-RECORD-TYPE PIC X VALUE "A".
03 A-ALPHA-FIELD-1 PIC X(20).
03 A-NUMERIC-FIELD-2 PIC S9(5).
03 A-NUMERIC-FIELD-3 PIC S9(5) COMP-3.
03 A-NUMERIC-FIELD-4 PIC S9(4) COMP.
03 A-NUMERIC-FIELD-5 PIC S9(5) COMP.
03 A-NUMERIC-FIELD-6 PIC S9(8) COMP.

*
01 B-SAMPLE-RECORD.

Code Magus Limited 14 CML00029-02



A EXAMPLE—COVERTING DATA FROM AN ASCII BASE TO AN EBCDIC
BASE

03 B-RECORD-TYPE PIC X VALUE "B".
03 B-NUMERIC-FIELD-1 PIC S9(8) COMP.
03 B-NUMERIC-FIELD-2 PIC S9(4) COMP.
03 B-NUMERIC-FIELD-3 PIC S9(5) COMP-3.
03 B-NUMERIC-FIELD-4 PIC S9(5).
03 B-NUMERIC-FIELD-5 PIC S9(5) COMP.
03 B-ALPHA-FIELD-6 PIC X(20).

The following illustrates the usage of this command using the above configuration file:

xpcfiles --config-file=asc2ebc.conf \
--input-spec="binary(sample_ascii_in.bin,mode=rb,recfm=f,reclen=39)" \
--output-spec="binary(sample_ebcdic_out.bin.mode=wb,recfm=f,reclen=39)"

Code Magus Limited 15 CML00029-02



B EXAMPLE—CONDITIONALLY ZAPPING FIELDS IN THE INPUT FILE

B Example—Conditionally Zapping Fields in the Input
File

Assume a file described by copybook TESTBOOK.cpy:

01 input_map.
03 field1 pic x.
03 field2 pic x.
03 field3 pic s9(7) comp-3.

In this file of 6 byte records, some of the values of field-3 are not valid:

00..__..__05..__..__10..__..__15..__..__20..__..__25..__..__30..
0000: 41410000000C41410000001C41410000002C41420000003C41420000004C4142
0000: A.A.........A.A.........A.A.......,.A.B.......<.A.B.......L<A.B.
0020: 4141414141410000005C41410000006C41410000007C
0032: A.A.A.A.A.A.......\*A.A.......l%A.A.......|@

This causes formatting errors (Error unpacking value for FIELD3) when
trying to interpret the file using the copybook TEXTBOOK.cpy as shown in this fol-
lowing output from the cmlprint tool (see record 6):

Start of File = binary(example.dat,recfm=f,reclen=6,mode=rb).
Using object types = testtype.objtypes.

Seq = 1, Length = 6
File = binary(example.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "A"
03 FIELD3 = 0

Seq = 2, Length = 6
File = binary(example.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "A"
03 FIELD3 = 1

Seq = 3, Length = 6
File = binary(example.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"

Code Magus Limited 16 CML00029-02



B EXAMPLE—CONDITIONALLY ZAPPING FIELDS IN THE INPUT FILE

03 FIELD2 = "A"
03 FIELD3 = 2

Seq = 4, Length = 6
File = binary(example.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "B"
03 FIELD3 = 3

Seq = 5, Length = 6
File = binary(example.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "B"
03 FIELD3 = 4

Seq = 6, Length = 6
File = binary(example.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "B"
03 FIELD3 = X"41414141"

Seq = 7, Length = 6
File = binary(example.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "A"
03 FIELD3 = 5

Seq = 8, Length = 6
File = binary(example.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "A"
03 FIELD3 = 6

Code Magus Limited 17 CML00029-02



B EXAMPLE—CONDITIONALLY ZAPPING FIELDS IN THE INPUT FILE

Seq = 9, Length = 6
File = binary(example.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "A"
03 FIELD3 = 7

Ordinarily, this would also cause xpcfiles processing to terminate with a suitable
error message. Ordinarily, this is normal and desirable behaviour.

Cross Platform Copy.
Copyright (c) 2000-2003 by Stephen Donaldson. All rights reserved.
Copyright (c) 2001-2004 by Code Magus Limited. All rights reserved.

mailto:stephen@codemagus.com, http://www.codemagus.com
Build: Apr 24 2008, 16:18:01

path "./%s.cpy";

global lazy;
input ascii, little_endian;
output ebcdic, big_endian;

layout "Sample Layout"
book TESTBOOK map input_map
include input_map
when input_map.field1 = ’A’;

Error unpacking value for FIELD3.
Error converting buffer for record number = 6.
Offset of error = 2.

Current input buffer:

00..__..__05..__..__10..__..__15..__..__20..__..__25..__..__30..
0000: 414241414141
0000: A.B.A.A.A.A.

Output buffer so far:

00..__..__05..__..__10..__..__15..__..__20..__..__25..__..__30..
0000: C1C20000004C
0000: .A.B......L<

Terminating conversion.

There are situations where values do not form part of the field domain and which are not
considered errors. Such situations occur, for example, in DB2 extracts where the miss-
ing field value is indicated by the presence of a specific value in another field (typically,

Code Magus Limited 18 CML00029-02



B EXAMPLE—CONDITIONALLY ZAPPING FIELDS IN THE INPUT FILE

the null indicator). In the example above we use a zap to make the value of field3
value before the conversion process, and in this example the condition under which this
occurs is if field2 has the value of ‘B’:

Cross Platform Copy.
Copyright (c) 2000-2003 by Stephen Donaldson. All rights reserved.
Copyright (c) 2001-2004 by Code Magus Limited. All rights reserved.

mailto:stephen@codemagus.com, http://www.codemagus.com
Build: Apr 24 2008, 16:18:01

path "./%s.cpy";

global lazy;
input ascii, little_endian;
output ebcdic, big_endian;

layout "Sample Layout"
book TESTBOOK map input_map
include input_map
zap input input_map.field3 when input_map.field2 = ’B’ with -1
when input_map.field1 = ’A’;

The conversion now no longer values on invalid field3 values, and the converted file
also formats without errors. Notice in the file, that wherever field2 has a value of
‘B’, field3 has a value of −1:

Start of File = binary(outfile.dat,recfm=f,reclen=6,mode=rb).
Using object types = testtype.objtypes.

Seq = 1, Length = 6
File = binary(outfile.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "A"
03 FIELD3 = 0

Seq = 2, Length = 6
File = binary(outfile.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "A"
03 FIELD3 = 1

Seq = 3, Length = 6

Code Magus Limited 19 CML00029-02



B EXAMPLE—CONDITIONALLY ZAPPING FIELDS IN THE INPUT FILE

File = binary(outfile.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "A"
03 FIELD3 = 2

Seq = 4, Length = 6
File = binary(outfile.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "B"
03 FIELD3 = -1

Seq = 5, Length = 6
File = binary(outfile.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "B"
03 FIELD3 = -1

Seq = 6, Length = 6
File = binary(outfile.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "B"
03 FIELD3 = -1

Seq = 7, Length = 6
File = binary(outfile.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "A"
03 FIELD3 = 5

Seq = 8, Length = 6
File = binary(outfile.dat,recfm=f,reclen=6,mode=rb)
Type = layout

Code Magus Limited 20 CML00029-02



B EXAMPLE—CONDITIONALLY ZAPPING FIELDS IN THE INPUT FILE

Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "A"
03 FIELD3 = 6

Seq = 9, Length = 6
File = binary(outfile.dat,recfm=f,reclen=6,mode=rb)
Type = layout
Title = Test Book Layout

01 INPUT_MAP
03 FIELD1 = "A"
03 FIELD2 = "A"
03 FIELD3 = 7

Code Magus Limited 21 CML00029-02



REFERENCES REFERENCES

References

[1] recio: Record Stream I/O Library Version 1. CML Document CML00001-01, Code
Magus Limited, July 2008. PDF.

Code Magus Limited 22 CML00029-02

http://www.codemagus.com/documents/recio_CML0000101.pdf

	1 Introduction
	2 Processing
	3 Configuration
	4 Processing Binary Data in Alpha-numeric Fields
	5 Execution
	A Example---Coverting Data From an ASCII Base to an EBCDIC Base
	B Example---Conditionally Zapping Fields in the Input File

