
CML Query V2: Web Query Tool Version 2

CML00118-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road

Oxford, OX2 6EY, United Kingdom
www.codemagus.com

Copyright c⃝ 2014 by Code Magus Limited
All rights reserved

November 23, 2020

CONTENTS CONTENTS

Contents
1 Introduction 3

2 Overview 4

3 User Guide 6
3.1 The Key Fields . 6
3.2 The Advanced Filter . 7
3.3 Query Performance . 9

3.3.1 Effect of Row Limit on a Query 9
3.3.2 Performance Summary . 10

A Lexical Elements, Syntax and Semantics 11
A.1 Expression Overview . 11
A.2 Expression Grammar . 11

A.2.1 Lexical Elements . 11
A.2.2 Syntactical Elements . 13

A.3 Built-in Functions . 18
A.3.1 SysStrLen, strlen, length . 18
A.3.2 SysSubStr, substr . 18
A.3.3 SysString, string . 19
A.3.4 SysNumber, number . 19
A.3.5 SysStrCat, strcat . 20
A.3.6 SysStrStr, strstr . 20
A.3.7 SysStrSpn, strspn . 20
A.3.8 SysStrCspn, strcspn . 21
A.3.9 SysStrPadRight, padright . 21
A.3.10 SysStrPadLeft, padleft . 22
A.3.11 SysFmtCurrTime, strftimecurr 22
A.3.12 SysTime, time2epoch . 23
A.3.13 SysStrFTime, strftime . 24
A.3.14 SysInTable, intable . 25
A.3.15 SysStrCondPack, condpack 26
A.3.16 TermAppStructDataGet, sfget 27
A.3.17 TermAppStructDataSet, sfset 27
A.3.18 gsub, replace . 28
A.3.19 alias, lookup . 30
A.3.20 pstore set, psset . 30
A.3.21 pstore get, psget . 31
A.3.22 pstore get cset, psget cset . 32
A.3.23 pstore get incr, psget incr . 33
A.3.24 pstore get incr cset, psget incr cset 33

Code Magus Limited 1 CML00118-01

LIST OF FIGURES LIST OF FIGURES

List of Figures
1 Query Submit Form . 4
2 Query with Advanced Filter . 5
3 Query Results . 5

Code Magus Limited 2 CML00118-01

1 INTRODUCTION

1 Introduction

The Code Magus Limited Query System is a web enabled data query system that offers
fast searching over a wide area of the data, as well as deeper targeted searches to answer
specific queries. Users, such as a data analyst, can search and interrogate the data within
an application domain to which they are granted access.

Chronological (or time series) transaction logs are excellent candidates for these types
of queries.

Code Magus Limited 3 CML00118-01

2 OVERVIEW

2 Overview

A user can query data simply by supplying search patterns for up to 10, pre-configured
key fields and an optional time range. The key fields are chosen for the application such
that using them should cater for nearly all the queries a data analyst would normally need
to perform. See image 1 on page 4 for an example of a Credit Card Logging application
domain. If a user wishes to examine all credit card transactions for a particular POS
(point of sale) terminal in a set of transaction logs they just select the correct application
domain and enter the card number (or part of it) in the Primary Account Number
key input field.

Figure 1: Query Submit Form

Should a more in depth query be required, the Query System also exposes an advanced
filter using meta data and expressions over the meta data as explained in objtypes:
Configuring for Object Recognition, Generation and Manipulation[2] and expeval: Ex-
pression Evaluation User Guide[1] or appendix A on page 11. The user can construct
very detailed query configurations. These advanced filter configurations can be saved
for future use. Figure 2 on page 5 shows an example of an advanced filter.

The Query System is designed to return relevant data as quickly as possible. The initial
result set screen displays control information (record type, associated groups and times-
tamp), the key fields and up to ten pre-configured fields of interest. All key fields are
links that if clicked on will return a result set of all records (within the current date range
and maximum rows set) that match the index value. Each returned record can be further
expanded to display all fields in the record should a user wish to view them. Figure 3
on page 5 shows an example of a result from a query.

Code Magus Limited 4 CML00118-01

2 OVERVIEW

Figure 2: Query with Advanced Filter

Figure 3: Query Results

Code Magus Limited 5 CML00118-01

3 USER GUIDE

3 User Guide

3.1 The Key Fields

The key fields are pre-defined per domain and there may be up to 10 of them. They
provide a fast way to query the domain data as they are database indexes optimised for
speed. All the key fields are treated as plain text even if the value they hold is numeric.
This means that a search is done using text values.

There are three types of value that can be entered into any of the key fields and each will
match the data (or not) in a slightly different way.

1. Simple match.

By entering a value in a key field input text box, records will be filtered for records
where the key field exactly matches this value. This does mean that a search value
such as "1234" will not match a value "AB1234".

2. Simple pattern.

The two meta-characters "_" (underscore) and "%" (percent) will match respec-
tively any single character and zero or more characters. Taking the example above
"%1234" will match the value "AB1234", but "_1234" will not.

3. Extended Regular expression pattern.

To search using an extended regular expression, the pattern should start with a
"/" (forward slash). The Query System will remove the first character and use
the rest of the pattern as an extended regular expression.

An extended regular expression is a pattern made up of actual characters and
a rich number of meta-characters that make complex matching possible. Any
(printable) character will match itself as in the two matching types above. A meta-
character allows matching any value, ranges of values or sequences of the same
item. Traditionally, all meta-characters are preceded by an escape character "\"
(backslash) in order to identify them, but in extended regular expressions some
meta-characters (for example ".*[]") do not need to be escaped. In extended
regular expressions, for example, if matching an actual "." (full stop) then it
needs to be escaped as "\.". For a good explanation of regular expressions and in
particular extended regular expressions, refer to https://en.wikipedia.
org/wiki/Regular_expression.

Taking the example above, the expression "/.*1234", means match any num-
ber of characters (including zero) followed by the value "1234" and will match
the value "AB1234".

Most importantly the pattern "/1234" will match the value "AB1234", as a
regular expression matches any part of the value unless explicitly coded to not.

Code Magus Limited 6 CML00118-01

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

3.2 The Advanced Filter 3 USER GUIDE

The meta-character "ˆ" (Circumflex accent) matches the beginning of the value
and "$" matches the end of the value. Therefore the pattern "/ˆ1234$" will
not match the value "AB1234".

3.2 The Advanced Filter

The advanced filter enables finely tuned and specific queries to be performed when using
the Key fields returns too many false positives. For example, if in a card application
the Primary Account Number (PAN) shown on a transaction slip has the middle digits
masked with dots and querying on this using a regular expression in the key field would
return many more rows than the single transaction required. A user could then use the
advanced filter to limit the transaction set to only those with a specific amount.

To activate, click on ”Advanced Filter” at the bottom of the Query Builder page. From
here you will need to add one or more filters by clicking on the plus sign to the left of
”Add filter”.

This opens a small dialogue (one for each filter added or one per object type selected)
that allows the user to select from a drop down the ”From” object type to filter, and a
text entry box in which to type the query expression.

The Query expression must be an expression that returns a Boolean TRUE or FALSE
when executed against each record of the selected object type. At its simplest an ex-
pression could be $PAN like ’ˆ542789.*1079’.

Even this simple expression needs some explaining.

1. The literal ’ˆ542789.*1079’

This literal is a regular expression pattern that will match a character field (al-
though it is numeric data) referred to as $PAN (see below) where it starts with the
given digits 542789, followed by anything (including nothing), followed by the
digits 1079.

2. $PAN The variable reference.

This could have been written as TERMAPP.DE_2_PRIMARY_ACCOUNT_NUMBER,
as this is the fully qualified name for the Primary Account Number within this ob-
ject type. But, that is difficult to remember, as this field may occur in many object
types across many different application domains, and it may not always be the
same name. So instead the $ prefixed name of your own choice creates a refer-
ence variable. Here PAN is used as a short easy to remember acronym. Once the
expression is typed in, click on the ”Resolve” button and a new drop down will
appear with the title $PAN to the left. This is a list of all the fields in the type
selected above. Once the correct name is selected, then $PAN will be associated
with this name and correctly substituted in the query at execution time.

Code Magus Limited 7 CML00118-01

3.2 The Advanced Filter 3 USER GUIDE

The query can be saved by entering a name and description and clicking on the ”Save
Query” button. Note that any values entered into the key fields or advanced query
prompts are not saved.

Saving a query is useful in the circumstance where it needs to be executed many times
over. The above simple query, though, is not so useful if on subsequent days a user
needs to run a query on a different PAN. For this, a query is needed where the value to
query is prompted for each time. To achieve this change the simple query to look like
this:

$PAN like ’@pan’

When the ”Resolve” button is pressed now, the system defines a global prompt variable
called @pan and adds two input text fields to the top of the advanced filter dialogue. It
requires a ”Description” and a ”Constraint”. These values are used at query execution
time to help the user running the query, when they will need to supply the substitu-
tion value for the pan. Remember that the person defining a query may not be the the
person running it in the normal course of their work. The description should say what
this prompt is asking for and the constraint is a regular expression that limits the input
values that the user can key in. For example for a prompt of the PAN value, the de-
scription could be "Enter a Primary Account Number Mask" and the con-
straint should be a regular expression that only allows digits and trailing spaces, such
as "ˆ[0-9.]\+[]*", which means the value must start with one or more digits or
dots (to represent a single digit), followed by zero or more spaces. The following spaces
are not necessary here, but are used to show a more complex regular expression. If this
query is saved, then each time it is selected to be executed, it will prompt the user for
the value to search for. At its simplest this could just be the exact card number.

To create a query that searches for cards matching a pattern and a specific amount use
an expression like this: ($PAN like ’@pan’) and ($AMOUNT = @amount)
Associate $PAN and $AMOUNT with the correct fields in the drop down list of fields
for the corresponding selected type and add a description and constraint to each of the
global prompt fields shown at the top of the Advanced filter.

If this same query is required for more than one type, then add more filters and paste
the same query in and click on the ”Resolve” button next to that query. Two more drop
downs for $PAN and $AMOUNT will appear so that they can be associated to the correct
field for this type. No more global prompt values will appear, as they have already been
defined and the values entered by the query user will be substituted in for each additional
filter.

It is highly likely that PAN (and possible AMOUNT) are declared as key fields. In this
case there is no need to use them in the advanced filter as the key field value will be able
to subset the data based on the value supplied there.

These simple expression have shown a couple of operands.

Code Magus Limited 8 CML00118-01

3.3 Query Performance 3 USER GUIDE

1. like for matching using a regular expression.

2. = for numeric equality.

3. () for grouping expressions.

4. and for logical and of two Boolean values.

There are many more expressions and built in functions that can be used. For more
information please consult the expeval documentation in appendix A on page 11.

3.3 Query Performance

The speed with which the Query System returns records from the domain data depends
on which type of key value or advanced filter is used.

The simple match is always the fastest and it is best to use as many key values as
possible.

If a wild card search is necessary, then try putting the wild card portion towards the end
of the value. The shorter the fixed portion at the front is, the slower the query will be.
For example the following are ranked from the fastest to the slowest.

• 12345_ (Fastest)

• 12345%

• 1234%6789

• 12%45

• %12345 OR /.*12345$

• %12345% OR /12345 (Slowest)

Note (as explained above in section 3.1 on page 6) that /12345 is not the same as
12345 as the first is a regular expression and as such will search for 12345 anywhere
in the data, and the second is an exact match; the data must start with 1 and end with 5.

3.3.1 Effect of Row Limit on a Query

On the query input form the field ‘Limit query by records’ is an upper limit of
records to return. However, in terms of query performance it is most useful when there
is no advanced filter specified. In this case, the Query System adds a limit clause to the
database query. This is well optimised as the query itself will not return more than the
requested amount of rows from the underlying database manager.

If, on the other hand there is an advanced filter, then the Query System does not add
a limit clause to the database query as it needs to further qualify the results with the

Code Magus Limited 9 CML00118-01

3.3 Query Performance 3 USER GUIDE

advanced filter. For example for a limit of 50, if the values supplied would cause a very
large result set to be returned, say 10000, the Query System has to wait until this is
complete and it has all 10000 rows before applying the advanced filter to them and only
applying the limit test to those that are selected by the advanced filter and returning only
the first 50 of those. In other words in this example the system would have spent time
searching for and returning (potentially) 9950 rows that are then discarded.

3.3.2 Performance Summary

In summary, try to follow these steps when querying the domain data:

1. Always try to use full index values for the best query performance.

2. If this is not possible, try to limit the wild card values required and have them
towards the end of a value.

3. Use the advanced query with caution. Select a narrow date range or use it in
conjunction with specific filter values.

Code Magus Limited 10 CML00118-01

A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

A Lexical Elements, Syntax and Semantics

A.1 Expression Overview

The lexical elements of an expression are the variables, literals, operators and other
character symbols used to form an expression. These lexical elements or tokens are
separated by white spaces. White spaces include sequences of the space character, new-
line character, the tab character and the linefeed character and their only function is to
separate or delimit the tokens.

The lexical elements are often single characters having their own apparent meaning,
but some are grouped together to form a word having a specific meaning. Included or
associated with each token may be an attribute value.

An expression, made up of the constituent tokens into the syntax and semantics of the
grammar, is then validated and evaluated by the expression evaluation library. The
evaluation of an expression produces a value that can then be used within the context of
the grammar of the specific Code Magus product within which it is specified.

Examples of expressions are:

1. 3+4

2. balance + 100

3. (account.balance >= 2000)

4. where (account.balance = 0)

5. where (account.balance < 0) and
(account.overdraft_facility = ’Y’)

6. SysString(account.balance)

A.2 Expression Grammar

A.2.1 Lexical Elements

The base elements are Literals and Identifiers.

• Numeric Literals

A Numeric literal is made up from an optional plus or minus sign followed by one
or more digits and optionally followed by a point and one or more digits.

Code Magus Limited 11 CML00118-01

A.2 Expression GrammarA LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

Number Literal

�
�- +

�����- -
����

�
�
�

- 0-9
�� ���

�
�
�

�
�- .

����- 0-9
�� ���

�
�
�

�
�

-

• String Literals

String literals are made up from

– Any number of printable characters, except the enclosing character and a
newline, enclosed in either single or double quotes.

– An even number of hexadecimal digits enclosed in either single or double
quotes and prefixed with a lower or upper case X.

String Literal

- "
����- Printable characters except "

�� ��- "
�����

�- ’
����- Printable characters except ’

�� ��- ’
����

�
�

-

Hexadecimal Literal

- X
�����

�- x
����

�
�

- "
����- 0-9a-fA-F

�� ��- 0-9a-fA-F
�� ���

�
�
�
- "
�����

�- ’
����- 0-9a-fA-F

�� ��- 0-9a-fA-F
�� ���

�
�
�
- ’
����

�

�

-

• Identifiers

An identifier is used for both variable and function names. An identifier must
conform to:

– A lower or upper case alphabetic character followed by any number of un-
derscores, decimal digits and upper and lower case alphabetic characters.

– One or more decimal digits followed by an underscore and the above rule.

Code Magus Limited 12 CML00118-01

A.2 Expression GrammarA LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

Identifier

�
� - 0-9

�� ���
�

�
�
-
����

�
�
- a-zA-Z
�� ��- 0-9a-zA-Z

�� ���
�

�
�

-

A.2.2 Syntactical Elements

Expressions may themselves be used as syntactical elements when forming a compound
expression.

The complete syntax of a compound expression is explained in the following sections
starting with the compound expression and working down to the lowest level syntactic
element.

CompoundExpression

- Expression -

Code Magus Limited 13 CML00118-01

A.2 Expression GrammarA LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

Expression

- Expression - +
����- Expression�

�- Expression - -
����- Expression

�- Expression - *
����- Expression

�- Expression - /
����- Expression

�- Expression - mod
�� ��- Expression

�- Expression - and
�� ��- Expression

�- Expression - or
�� ��- Expression

�- Expression - <
����- Expression

�- Expression - >
����- Expression

�- Expression - =
����- Expression

�- Expression - <>
�� ��- Expression

�- Expression - >=
�� ��- Expression

�- Expression - <=
�� ��- Expression

�- Expression - like
�� ��- HomeString

�- -
����- Expression

�- +
����- Expression

�- not
�� ��- Expression

�- unique
�� ��- Expression

�- Expression - unless
�� ��- Expression

�- Primary

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-

The unless-operator conditionally returns the value of the right-hand operand, unless
there is an error evaluating the right-hand operand. In the case where the right-hand
operand fails to evaluate to a proper value, the value of the left-hand operand is returned

Code Magus Limited 14 CML00118-01

A.2 Expression GrammarA LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

instead. The left-hand operand is always evaluated before the right-hand operand. If
the left-hand operand fails to evaluate to a proper value, then the result of the unless-
operator is a failure.

Primary

- Literal�
�- Variable

�- (
����- Expression -)

�����- Function - (
����- ExpressionList -)

�����- ifelse
�� ��- (

����- Expression - ,
����- Expression - ,

����- Expression -)
����

�
�
�
�
�

-

As a terminal in the syntax structure an expression or Primary is either a Literal or
a Variable, an Expression enclosed in parenthesis, a Function call reference, or the
conditional evaluation operator ifelse. A Literal may be a String Literal or a Number
Literal as described in Section A.2.1 on page 11.

Where required by the encoding indicated or defaulted, characters representing the at-
tribute value of a string are changed to an alternate character set if the required character
set is not the same as the home character set being used. For example, on a machine in
which the characters are naturally represented using the EBCDIC character set encod-
ing (such as code page of 1047 or Latin 1/Open Systems), if the data being processed
is from a machine in which the characters are naturally represented using the ASCII
character set (such as ISO8859-1), then the characters in the String literal (assumed to
be represented in EBCDIC) will be translated to their corresponding ASCII characters
for processing. This does not apply to String literals that were represented as a sequence
of hexadecimal digits.

Both a Function (see Section A.2.2 on page 17) and an Expression are made up of
sub-expressions, although eventually even they must terminate and resolve to a value.

A HomeString is a String Literal that may not be represented as a sequence of hexadec-
imal digits, but in which the encoding is left in the natural encoding of the machine
processing the data; that is the machine on which the expression string is being com-
piled. This is required for the right-hand operand of the like operator as this operator
translates the value of the left-hand operand into the local encoding when performing
pattern matching.

Operators, variables and functions are described in more detail below:

• Operators

In the context of the expression evaluation library, an operator is a symbol that

Code Magus Limited 15 CML00118-01

A.2 Expression GrammarA LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

operates on or causes an action to be be performed on the constants and variables
adjacent to it. An operator is either

– Monadic
A monadic operator only operates on one value and usually employ either
prefix or postfix notation in that they either occur before or after the value
they operate on. The expression evaluation library uses only prefix monadic
operators.

– Dyadic
Dyadic operators operate on two values and employ infix notation in that
they operate on the the values that immediately precede and follow the op-
erator.

All operators return a value of a defined type which is the result of the computa-
tion. The type returned by an operator must be semantically consistent within the
context of the rest of the expression and the grammar it may be embedded in.

Table 1 on page 16 lists the allowed operators, their precedence, associativity,
arity (whether or not they are monadic or dyadic) and Type.

Operator Precedence Associativity Arity Type
like 1 non-assoc dyadic Relational
<> 1 left dyadic Relational
>= 1 left dyadic Relational
<= 1 left dyadic Relational
= 1 left dyadic Relational
> 1 left dyadic Relational
< 1 left dyadic Relational
+ 2 left dyadic Arithmetic
- 2 left dyadic Arithmetic
or 2 left dyadic Boolean
* 3 left dyadic Arithmetic
/ 3 left dyadic Arithmetic
div 3 left dyadic Arithmetic
and 3 left dyadic Boolean
mod 3 left dyadic Arithmetic
- 4 left monadic Arithmetic
not 4 left monadic Boolean

unique 4 left monadic boolean
unless 5 left dyadic boolean

Table 1: Operators: Precedence, Associativity, Arity and Type

• Variables

Code Magus Limited 16 CML00118-01

A.2 Expression GrammarA LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

A variable is the name of a storage location that holds a value. Simply this name
is just an Identifier, but may be more than one level or node including an index.

Variable

- Variable Node�
�- IndexedString

�- Variable - .
����- Variable Node�

�- :
����- Variable Node

�
�

�
�
�

-

Variable Node

- Identifier �
�- [

����- Number -]
����

�
�

-

IndexedString

- [
����- String -]

����-

Examples of variable names are:

– Address - A single node variable with no indexing.

– Customer.Address - A two node variable.

– Customer.Address[1] - A two node variable where the Address por-
tion of the variable is the first of an array of items. Here this may be the first
line of an address.

– Customer[3].Address[1] - A two node variable that specifies the
third entry of the Customer array and the first entry of the Address array
within that Customer.

– Customer.Contact.HomePhone - A three node variable.

• Functions

A function is a special type of operator. It is specified by the function name, an
identifier, followed by a comma separated list of arguments enclosed in parenthe-
ses.

Function

- Identifier - (
����- ExpressionList -)

����-

Code Magus Limited 17 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

where an expression list is defined as

ExpressionList

- Expression�
� ,

�����
�
�

-

The function call is replaced with the result of the call and the result type must
be semantically consistent within the context of the rest of the expression and the
grammar it may be embedded in.

A.3 Built-in Functions

Functions for expression evaluation can be supplied by the application that uses it and
as such has a rich set of plug in functions that can not be documented here. However
there are functions that are common to all data processing and these are supplied by the
expression evaluation library and are described below.

A.3.1 SysStrLen, strlen, length

• Synopsis

– SysStrLen(string)

– strlen(string)

– length(string)

• Parameters

– Parameter 1 type: String.

• Description

The SysStrLne function (aliases strlen, length) returns the number of
characters in the string supplied as the first argument.

A.3.2 SysSubStr, substr

• Synopsis

– SysSubStr(string,start,length)

– substr(string,start,length)

• Parameters

Code Magus Limited 18 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– Parameter 1 type: String.

– Parameter 2 type: Number.

– Parameter 3 type: Number.

– Return type: String.

• Description

The SysSubStr function (alias substr) returns a substring of the given string
from start for length characters or the remainder of string whichever is the short-
est.

The start must be greater than zero and the length must be zero or greater. If the
start position is past the end of the string then a NULL string is returned.

A.3.3 SysString, string

• Synopsis

– SysString(number)

– string(number)

• Parameters

– Parameter 1 type: Number.

– Return type: String.

• Description The SysString function (alias string) returns the value of num-
ber as a string.

A.3.4 SysNumber, number

• Synopsis

– SysNumber(string)

– number(string)

• Parameters

– Parameter 1 type: String.

– Return type: Number.

• Description The SysNumber function (alias number) returns a number equiv-
alent to the value of string.

Code Magus Limited 19 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

A.3.5 SysStrCat, strcat

• Synopsis

– SysStrCat(first,second)

– strcat(first,second)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: String.

• Description The SysStrCat function (alias strcat) returns a String which is
the concatenation of the two input strings first and second.

A.3.6 SysStrStr, strstr

• Synopsis

– SysStrStr(haystack,needle)

– strstr(haystack,needle)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: Number.

• Description The SysStrStr function (alias strstr) returns the start position
of needle within haystack. If needle does not occur in haystack then
zero is returned, otherwise the position (origin 1) is returned.

A.3.7 SysStrSpn, strspn

• Synopsis

– SysStrSpn(string,accept)

– strspn(string,accept)

• Parameters

– Parameter 1 type: String.

Code Magus Limited 20 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– Parameter 2 type: String.

– Return type: Number.

• Description The SysStrSpn function (alias strspn) returns the number of
characters (bytes) in the initial segment of string which consist only of char-
acters from accept.

A.3.8 SysStrCspn, strcspn

• Synopsis

– SysStrCspn(string,reject)

– strcspn(string,reject)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: Number.

• Description The SysStrCspn function (alias strcspn) returns the number
of characters (bytes) in the initial segment of string which do not match any
character from reject.

A.3.9 SysStrPadRight, padright

• Synopsis

– SysStrPadRight(string,length,pad)

– padright(string,length,pad)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: Number.

– Parameter 3 type: String. Although the type is String, only the first character
is used as the pad character.

– Return type: String.

• Description The SysStrPadRight function (alias padright) returns a string
whose length is length and:

Code Magus Limited 21 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– if length is greater than the length of string, is string padded on the
right with the pad character

– if length is less than the length of string, is string truncated from
the right to length.

– if length is equal to the length of string, is string.

A.3.10 SysStrPadLeft, padleft

• Synopsis

– SysStrPadLeft(string,length,pad)

– padleft(string,length,pad)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: Number.

– Parameter 3 type: String. Although the type is String, only the first character
is used as the pad character.

– Return type: String.

• Description The SysStrPadLeft function (alias padleft) returns a string
whose length is length and:

– if length is greater than the length of string, is string padded on the
left with the pad character

– if length is less than the length of string, is string truncated from
the left to length.

– if length is equal to the length of string, is string.

A.3.11 SysFmtCurrTime, strftimecurr

• Synopsis

– SysFmtCurrTime(format)

– strftimecurr(format)

• Parameters

– Parameter 1 type: String.

– Return type: String.

Code Magus Limited 22 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

• Description The SysFmtCurrTime function (alias strftimecurr) returns
a string that represents the current time as formatted according to format using
the C run-time strftime() function. Common values for format are:

– %c - The preferred date and time representation for the current locale.

– %d - The day of the month as a decimal number (range 01 to 31).

– %F - Equivalent to %Y-%m-%d (the ISO 8601 date format).

– %H - The hour as a decimal number using a 24-hour clock (range 00 to 23).

– %j - The day of the year as a decimal number (range 001 to 366).

– %m - The month as a decimal number (range 01 to 12).

– %M - The minute as a decimal number (range 00 to 59).

– %s - The number of seconds since the Epoch, 1970-01-01 00:00:00

– %S - The second as a decimal number (range 00 to 60, allows for leap sec-
onds).

– %T - The time in 24-hour notation (%H:%M:%S).

– %y - The year as a decimal number without a century (range 00 to 99).

– %Y - The year as a decimal number including the century.

– %% - A literal ’%’ character.

– Any other characters, not specified by strftime(), are copied verbatim
from format to the result string.

A.3.12 SysTime, time2epoch

• Synopsis

– SysTime(datetime,format)

– time2epoch(datetime,format)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String. Default “%Y%m%d”.

– Return type: Number.

• Description The SysTime function (alias time2epoch) returns the number
seconds since the Epoch calculated from datetime under the specification of
format.

Code Magus Limited 23 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

The seconds since the Epoch, when interpreted as an absolute time value, repre-
sents the number of seconds elapsed since the Epoch, 1970-01-01 00:00:00
+0000 (UTC).

datetime must be a string representation of a date and / or time and format
must be a date format string that exactly describes datetime using the format
characters as specified and used by the C function strptime().

Common options for the format are:

– %% - The % character.

– %c - The date and time representation for the current locale.

– %C - The century number (0-99).

– %d or %e - The day of month (1-31).

– %H - The hour (0-23).

– %I - The hour on a 12-hour clock (1-12).

– %j - The day number in the year (1-366).

– %m - The month number (1-12).

– %M - The minute (0-59).

– %p - The locale’s equivalent of AM or PM. (Note: there may be none.)

– %S - The second (0-60; 60 may occur for leap seconds; earlier also 61 was
allowed).

– %T - Equivalent to %H:%M:%S.

– %x - The date, using the locale’s date format.

– %X - The time, using the locale’s time format.

– %y - The year within century (0-99). When a century is not otherwise spec-
ified, values in the range 69-99 refer to years in the twentieth century (1969-
1999); values in the range 00-68 refer to years in the twenty-first century
(2000-2068).

– %Y - The year, including century (for example, 1991).

A.3.13 SysStrFTime, strftime

• Synopsis

– SysStrFTime(seconds,format)

– strftime(seconds,format)

Code Magus Limited 24 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

• Parameters

– Parameter 1 type: Number.

– Parameter 2 type: String.

– Return type: String.

• Description The SysStrFTime function (alias strftime) returns a string
date time representation of seconds formatted according to format as de-
scribed in the C runtime function strftime().

seconds is the number of seconds since the Epoch, which when interpreted as
an absolute time value, represents the number of seconds elapsed since the Epoch,
1970-01-01 00:00:00 +0000 (UTC).

format must be a date format string used to format the returned date time string.
For common values of format see section A.3.11 on page 23

A.3.14 SysInTable, intable

• Synopsis

– SysInTable(table,search)

– intable(table,search)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: Boolean.

• Description

The SysInTable function (alias intable) returns a boolean TRUE if the
value of search is found in the table of items table, otherwise it returns a
boolean FALSE.

The value of table may be either the name of a text file in which each line is
one element of the table, or a comma (,) or semi-colon (;) delimited string of the
element values of the table.

• Examples

– SysInTable(”C:\customerNames.txt”,”Smith”) This will test whether the name
”Smith” occurs in the list of elements in the file C:\customerNames.txt.

Code Magus Limited 25 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– SysInTable(”/tmp/customerNames.txt”,Record.Surname) This will test whether
the name identified by the object types[2] field Record.Surname occurs
in the list of elements in the file /tmp/customerNames.txt.

– SysInTable(”Smith,Jones,Right”,Record.Surname) This will test whether the
name identified by the object types[2] field Record.Surname occurs in
the list of elements in the comma separated list specified by the first argu-
ment.

A.3.15 SysStrCondPack, condpack

• Synopsis

– SysStrCondPack(String,String)

– condpack(String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: String.

• Description

The SysStrCondPack function (alias condpack) returns a string which is
conditionally formed by packing the string passed in the first parameter using
the second parameter as a possible replacement character. If the first parameter
matches the regular expression X"[0-9][A-F][a-f]" then the hexadecimal
characters are packed into the corresponding encoding character set (ASCII or
EBCDIC) characters. If the second parameter does not have a zero length, then the
first character of this parameter string is used to replace all the non-graphic/non-
printable characters of the packed character string. When the second parameter
string has a zero length, then the character ”?” is used as the replacement charac-
ter for non-graphic/non-printable characters in the return string.

If the first parameter string does not match the regular expression then the string
is considered to already be packed. In this case, the string is still checked if the
second parameter length is greater than one and the non-graphic/non-printable
characters are replaced by the first character of the second parameter string. When
the second parameter string has a zero length, then the character ”?” is used as
the replacement character for non-graphic/non-printable characters in the return
string.

• Examples

Code Magus Limited 26 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– condpack(’X"414141"’,"?") on an ASCII based machine returns
the string AAA.

– condpack(’X"4141410000"’,"?") on an ASCII based machine re-
turns the string AAA??.

– condpack("4141410000","?") on an ASCII or EBCDIC based ma-
chine returns the string 4141410000.

A.3.16 TermAppStructDataGet, sfget

• Synopsis

– TermAppStructDataGet(String,String)

– sfget(String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: String.

• Description This function takes as the first parameter a value that should contain
a TermApp DE48-F0.16 Structured Data field and as the second parameter
the name of a field within the structured data. The function will return the value
of the named field as a string, if the name could not be found an empty string is
returned.

• Examples

– sfget(DE48 FIELD,"OSVer")
WhereDE48 FIELD=
219Postilion::MetaData275211FWSerialNbr11115SWRel111
19CommsType11118TermType11115OSVer11116SWHash111211F
01E201WSerialNbr22101000100000001002242315SWRel21314
4060219CommsType214INTERNAL MODEM 18TermType18EFTsma
rt15OSVer1982003607816SWHash18B4E1963A

returns the string 820036078

A.3.17 TermAppStructDataSet, sfset

• Synopsis

Code Magus Limited 27 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– TermAppStructDataSet(String,String,String)

– sfset(String,String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Parameter 3 type: String.

– Return type: String.

• Description

• Examples

– sfset(DE48 FIELD,"FWSerialNbr",
"+----------LongerValue----------+")

Where DE48 FIELD is initially set to
219Postilion::MetaData275211FWSerialNbr11115SWRel111
19CommsType11118TermType11115OSVer11116SWHash111211F
WSerialNbr22101000100000001002242315SWRel2131401E201
4060219CommsType214INTERNAL MODEM18TermType18EFTsmar
t15OSVer1982003607816SWHash18B4E1963A

Will return the updated value of DE48 FIELD as
219Postilion::MetaData275211FWSerialNbr11115SWRel111
19CommsType11118TermType11115OSVer11116SWHash111211F
WSerialNbr233+----------LongerValue----------+15SWRe
l2131401E2014060219CommsType214INTERNAL MODEM18TermT
ype18EFTsmart15OSVer1982003607816SWHash18B4E1963A

A.3.18 gsub, replace

• Synopsis

– gsub(String,String,String,String)

– replace(String,String,String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Parameter 3 type: String.

Code Magus Limited 28 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– Parameter 4 type: String.

– Return type: String.

• Description The function gsub() operates in much the same why as the awk
gsub function does. The four parameters are

1. Regular Expression (r) This parameter is a regular expression that should
match one or more portions of the input text (t).

2. Substitution String (s) This parameter is the replacement string

3. Text to operate on (t) This parameter is the original input text value.

4. How to operate (h) This parameter determines how many times the replace-
ment text is substituted.

How (h) can be either

– g or G which means replace all occurrences of matched text with the substi-
tution string.

– Numeric which means replace only that occurrence.

The regular expression (r) matches none, one or more portions of the input text (t)
and based on the value of how (h) gsub() returns the input string where one or all
of the matches are replaced with the substitution string (s).

• Examples

– gsub("a","bb",textfield,how) This example specifies to replace
the letter a with two letter b’s in textfield under the control of the vari-
able how.

Textfield value How Returned Value Description
abcdea12345a G bbbcdebb12345bb Each a is replaced by two b’s.
abcdea12345a 2 abcdebb12345a The second a is replaced by two b’s.
abcdea12345a 1 bbbcdea12345a The first a is replaced by two b’s.

Table 2: Effect of using gsub() to substitute text

– gsub("\([ˆ]\+\) \([ˆ]\+\)","\2 \1",textfield,how)
This example specifies to match two substrings that contain any character
except a space and that the first substring must be followed by a space fol-
lowed by the second substring. The substitution string specifies to replace
the whole matched value with the second matched substring followed by a
space followed by the first matched substring. In other words is swaps two
substrings around where the substrings do not contain a space and are sepa-
rated by one space. The number of times the replacement is done is governed
by the value of the variable how.

Code Magus Limited 29 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

Textfield value How Returned Value Description
ABC DEF G DEF ABC The order of the two strings is reversed.

A1 bA1 A2 BA2 G bA1 A1 BA2 A2 Each set of two strings are reversed.
A1 bA1 A2 BA2 2 A1 bA1 BA2 A2 Only the second set is reversed.

Table 3: Effect of using gsub() to substitute text

A.3.19 alias, lookup

• Synopsis

– alias(String,String)

– lookup(String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: String.

• Description This function uses the second parameter as a lookup key to extract
the associated value in the first parameter, which holds keyword value pairs. The
value corresponding to the matched key word is returned. The keyword value
pairs specified in the first parameter can either be a comma or semi-colon list of
keyword=value pairs or a file name containing one keyword=value pair
per line.

• Examples

– lookup("A=Alsatian,L=Labrador,S=Spaniel","L")
Will return the string ”Labrador”

– lookup("D:/lookup.txt","L")
will return the string ”Labrador” if the file D:/lookup.txt holds the
following:

A=Alsatian
L=Labrador
S=Spaniel

A.3.20 pstore set, psset

• Synopsis

– pstore set(String,String,String)

Code Magus Limited 30 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– psset(String,String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Parameter 3 type: String.

– Return type: String.

• Description This function sets a value in a persistent store specified in parameter
1 using the variable name specified in parameter 2 and the value in parameter 3.
If an error occurs, for example not being able to connect to the persistent store
server, an error condition is returned.

The persistent store is identified by host:port where host is either an IP
address or a DNS name that can be looked up and port is the port number on
that host to which the persistent store server listens for incoming connections.
The port (and the colon) can be left out in which case the default port is used. The
default port is currently 60060.

• Examples

– pstore set("www.codemagus.com:60069","ServerName","theCloud")
Will set and return the value of the variable ServerName to theCloud
on the specified host.

– psset("www.codemagus.com:60069","ServerName","theCloud")
Will perform the same function as the example above.

A.3.21 pstore get, psget

• Synopsis

– pstore get(String,String)

– psget(String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: String.

• Description This function retrieves a value from a persistent store specified in pa-
rameter 1 using the variable name specified in parameter 2. If the named variable
is not found then an error condition is returned.

Code Magus Limited 31 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

The persistent store is identified by host:port where host is either an IP
address or a DNS name that can be looked up and port is the port number on
that host to which the persistent store server listens for incoming connections.
The port (and the colon) can be left out in which case the default port is used. The
default port is currently 60060.

• Examples

– pstore get("www.codemagus.com:60069","ServerName")
Will return the value of the variable ServerName from the specified host.

– psget("www.codemagus.com:60069","ServerName")
Will perform the same function as the example above.

A.3.22 pstore get cset, psget cset

• Synopsis

– pstore get cset(String,String,String)

– psget cset(String,String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Parameter 3 type: String.

– Return type: String.

• Description This function retrieves a value from a persistent store specified in pa-
rameter 1 using the variable name specified in parameter 2. If the named variable
is not found then it is created with the default value specified in parameter 3 and
that value is returned.

The persistent store is identified by host:port where host is either an IP
address or a DNS name that can be looked up and port is the port number on
that host to which the persistent store server listens for incoming connections.
The port (and the colon) can be left out in which case the default port is used. The
default port is currently 60060.

• Examples

– pstore get cset("www.codemagus.com","ServerName","theNet")
Will return the value of the variable ServerName from the specified host
(using the default port), but if it is not found will return and set it to theNet.

Code Magus Limited 32 CML00118-01

A.3 Built-in Functions A LEXICAL ELEMENTS, SYNTAX AND SEMANTICS

– psget cset("www.codemagus.com","ServerName","theNet")
Will perform the same function as the example above.

A.3.23 pstore get incr, psget incr

• Synopsis

– pstore get incr(String,String)

– psget incr(String,String)

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Return type: Number.

• Description This function retrieves a string representation of a numeric value
from a persistent store specified in parameter 1 using the variable name specified
in parameter 2. The numeric string is returned as a number type and is subse-
quently incremented by 1 and saved back to the persistent store as a numeric
string.

The persistent store is identified by host:port where host is either an IP
address or a DNS name that can be looked up and port is the port number on
that host to which the persistent store server listens for incoming connections.
The port (and the colon) can be left out in which case the default port is used. The
default port is currently 60060.

• Examples

– pstore get incr("www.codemagus.com:60069","Count")
If the value of Count on the persistent store is 3, then this function will
return 3 and store 4 back on the persistent store. If the variable Count is
not found an error condition is returned.

– psget incr("www.codemagus.com:60069","Count")
Will perform the same function as the example above.

A.3.24 pstore get incr cset, psget incr cset

• Synopsis

– pstore get incr cset(String,String,Number)

– psget incr cset(String,String,Number)

Code Magus Limited 33 CML00118-01

REFERENCES REFERENCES

• Parameters

– Parameter 1 type: String.

– Parameter 2 type: String.

– Parameter 3 type: Number.

– Return type: Number.

• Description This function retrieves a string representation of a numeric value
from a persistent store specified in parameter 1 using the variable name specified
in parameter 2. The numeric string is returned as a number type and is subse-
quently incremented by 1 and saved back to the persistent store as a numeric
string. If the named variable is not found on the persistent store then the default
value specified in parameter 3 is returned and subsequently incremented and saved
on the persistent store.

The persistent store is identified by host:port where host is either an IP
address or a DNS name that can be looked up and port is the port number on
that host to which the persistent store server listens for incoming connections.
The port (and the colon) can be left out in which case the default port is used. The
default port is currently 60060.

• Examples

– pstore get incr cset("codemagus","Count",17)
If the value of Count on the persistent store is 3, then this function will
return 3 and store 4 back on the persistent store. If the variable Count is
not found then the value 17 is returned and 18 is saved to the persistent store
as the value of Count.

– psget incr cset("codemagus","Count",17)
Will perform the same function as the example above.

References

[1] expeval: Expression Evaluation User Guide. CML Document CML00091-01, Code
Magus Limited, January 2013. PDF.

[2] Code Magus Limited. objtypes: Configuring for Object Recognition, Generation
and Manipulation. CML Document CML00018-01, Code Magus Limited, July
2008. PDF.

Code Magus Limited 34 CML00118-01

http://www.codemagus.com/documents/expeval_guide_CML0009101.pdf
http://www.codemagus.com/documents/objtpuref_CML0001801.pdf

	1 Introduction
	2 Overview
	3 User Guide
	3.1 The Key Fields
	3.2 The Advanced Filter
	3.3 Query Performance
	3.3.1 Effect of Row Limit on a Query
	3.3.2 Performance Summary

	A Lexical Elements, Syntax and Semantics
	A.1 Expression Overview
	A.2 Expression Grammar
	A.2.1 Lexical Elements
	A.2.2 Syntactical Elements

	A.3 Built-in Functions
	A.3.1 SysStrLen, strlen, length
	A.3.2 SysSubStr, substr
	A.3.3 SysString, string
	A.3.4 SysNumber, number
	A.3.5 SysStrCat, strcat
	A.3.6 SysStrStr, strstr
	A.3.7 SysStrSpn, strspn
	A.3.8 SysStrCspn, strcspn
	A.3.9 SysStrPadRight, padright
	A.3.10 SysStrPadLeft, padleft
	A.3.11 SysFmtCurrTime, strftimecurr
	A.3.12 SysTime, time2epoch
	A.3.13 SysStrFTime, strftime
	A.3.14 SysInTable, intable
	A.3.15 SysStrCondPack, condpack
	A.3.16 TermAppStructDataGet, sfget
	A.3.17 TermAppStructDataSet, sfset
	A.3.18 gsub, replace
	A.3.19 alias, lookup
	A.3.20 pstore_set, psset
	A.3.21 pstore_get, psget
	A.3.22 pstore_get_cset, psget_cset
	A.3.23 pstore_get_incr, psget_incr
	A.3.24 pstore_get_incr_cset, psget_incr_cset

