
THISTLE

LANGUAGE REFERENCE MANUAL

Stephen R. Donaldson
stephen@codemagus.com

Code Magus Limited
23 Warnborough Road
Oxford, OX2 6JA, UK
www.codemagus.com

Copyright c
�

2002–2003, Code Magus Limited. All rights reserved.



ii



Contents

1 Introduction 1

1.1 Features of Thistle . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Operating Environment . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Elements of Thistle 5

2.1 comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Reserved Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Special Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Tree Name Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Structure of Thistle Artefacts . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Expressions and Operators . . . . . . . . . . . . . . . . . . . . . . . 19

3 Executable Statements 29

3.1 Compond Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Assigment Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Transfer of Control: Method Invocation . . . . . . . . . . . . . . . . 34

3.4 Transfer of Control: The return Statement . . . . . . . . . . . . . 34

3.5 Conditional Execution . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Iteraction: The for Statement . . . . . . . . . . . . . . . . . . . . . 35

3.7 Loops: The while Statement . . . . . . . . . . . . . . . . . . . . . 35

3.8 Loops: The repeat Statement . . . . . . . . . . . . . . . . . . . . 35

3.9 Interrupting Execution: The check Statement . . . . . . . . . . . . 36

3.10 Interrupting Execution: The break Statement . . . . . . . . . . . . 36

3.11 Choosing Name Space Scopes: The with Statement . . . . . . . . . 36

iii



iv CONTENTS

4 Thistle Usecases 37

5 Thistle Instances 39

6 Thistle Interfaces 41

7 Thistle System Objects 43

Bibliography 44



List of Figures

1.1 Thistle components and relationship to surrounding systems . . . . . 3

2.1 Thistle top level name space . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Resultant evaluated path and node values . . . . . . . . . . . . . . . 12

2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

v



vi LIST OF FIGURES



List of Tables

2.1 Escape characters and their corresponding encoded characters . . . . 8

2.2 Thistle Operators: Precedence, Associativity, and Aridity . . . . . . . 20

vii



Chapter 1

Introduction

Thistle is a programming language which has been designed for explicitly for scripting
and it has a number of constructs which make it particularly suitable for scripting in
the testing domain.

The language Thistle is based on the programming language Pascal[2, 1]. The inventors
of Thistle have made a number of simplifications and generalisations on Pascal which
have resulted in a language very suitable for scripting. Pascal was chosen as a basis for
Thistle as it already had a number of attributes which makes it a good candidate for a
scripting language.

1.1 Features of Thistle

The Thistle system comprises a compiler and run-time environment or interpreter. The
technology is designed to make sure that implementations can exists on Unix platforms,
on MicroSoft platforms and on OS/390 or z/OS. It should be clear from this document
how character set encodings and endianness of the hosting system do not affect the
Thistle scripts.

We assert that Thistle is a good scripting language for the following reasons:

Like Pascal, Thistle is a relatively small language, consists of few constructs and is easy
to understand. We have further simplified the language by removing strong typing.
Instead of the type-rich system of Pascal, Thistle only has a single elementary type
which is the string (Chapter ??).

The weak typeing of Thistle and hence the lack of compile-time type-checking is not a
problem for Thistle as Thistle artefacts are always compiled on demand.

Thistle has no aggregation data types such as Pascal’s arrays or records. The only
aggregate data structure in Thistle is a tree-like data structure and there exists only
one such tree. This is a generalisation of what is implicit in Pascal and many other
programming languages. In Thistle we have made this explicit to the point where
there is only one aggregated data structure which is a dynamic tree and to which all
items belong, including elementary items. The root of this tree is called thistle.

1



2 CHAPTER 1. INTRODUCTION

Aggregate data structures such as records and arrays are also represented in this tree
and hence hence there is no need for explicitly defining records or arrays.

This tree view is implicitly present in most programming languages and can be ob-
served by considering the collection of activation records at run-time together with
the scopes of objects, structures/records, classes, fucntions, procedures, methods and
elementary items present at runtime.

The thistle tree also contains predefined system artefacts. The tree is initialised
with these artefacts when the run-time system starts.

In Thistle, the thistle tree is initialised by the this run-time.

There has also been a conscious effort to make sure that the mapping to the hosting
operating system’s artefacts are handled by the run-time system and the naming con-
ventions of the operating system’s objects (such as files and directories) are not evident
in the syntax of Thistle. Of course, Thistle scripts may still represent the names of
such objects using the conventions of the hosting system for their own purposes. We
do this so that Thistle artefacts can be moved from one user’s system to another (of the
same or different architecture—where that makes sense). Where this happens either
because the scripts are moved or shared between users or projects with different local
preferences, we want to make sure that the content and semantics of the scripts are not
voided.

1.2 Operating Environment

Thistle is further isolated from the concrete representations and interfaces of the host-
ing system by the distance it maintains from the hosting system by interacting with it
through a system of portals. Portals are also the means by which the scripts interact
with the System Under Test or SUT when Thistle is used in a testing environment.

Figure 1.1 shows the relationship of the components of Thistle and its run-time system,
its hosting system and a system under test. The Thistle system comprises a compiler
and a run-time system. The Thistlecompiler has access to Thistle artefacts through a
locally hosted artefact repository. There is a standard naming convention of artefacts as
they are referred to within other Thistle artefacts. The mapping of this name space to
a local name space of the hosting operating system is the responsibility of the Thistle
system. This mapping is configurable and is the mechanism which makes sure that
there is no binding of the name space within Thistle artefacts and the name space of
the artefacts of the host system.

The run-time component prepares for execution of Thistle artefacts by building the
thistle tree with pre-defined types (see Chapter 7). The initial artefact type that
Thistle gives control to is the package. In the testing domain a package corre-
sponds to a test pack.

A package can give control to usecase artefacts which are syntactically similar to
packages. A usecase in turn can give control to other usecases and so on. Both
aertfact types maintain state for local variables, parameters, etc, is maintained on the
thistle tree.



1.2. OPERATING ENVIRONMENT 3

Compiler

SUT−channel−b

Artefact
Repository

Usecase−3

Portal−B

Interface−c

Thistle
System

Usecase−4

Usecase−1

Data−source−1

Portal−C

Interface−d

Interface−e

SUT

Data−source−2

Portal−D

Run−time

Interface−a

Package

SUT−channel−a

Portal−A

Interface−b

Usecase−2

Figure 1.1: Thistle components and relationship to surrounding systems



4 CHAPTER 1. INTRODUCTION

The executing Thistle artefacts never interface directly with the host system, nor with
any SUT. This is only ever achieved through an interface, with the actual manip-
ulation of either the system component or the SUT being performed by a portal.
Interfaces are either in-built or user-defined. For user-defined interaces, the interface is
described to the Thistle system using an interface artefact. Regardless of whether
the interface is built-in or user-defined, the interface is introduced into Thistle pack-
ages and usecases in the same manner, and for all practical purposes there is no
disticntion between the types of interface.

The responsibilities of a portal (which is not a Thistle language defined artefact) are to
manipulate the SUT, operating system, component, data source, etc. and to map the
name-space of the component to the name-space of Thistle. In this manner, the Thistle
artefacts of type package and usecase can directly manipulate the object. The
featurs of the language and the portals together make it possible to manipulate objects
(other applications, data sources, operating system objects, etc.) in a seamless, coherent
manner. This does not mean that an understanding of the objects being manipulated is
not required, but that the language framework and syntax does not have to be extended
or re-learned because of an expanding collection of data sources, applications, and
operating system components that can be interfaced to.



Chapter 2

Elements of Thistle

A program or script in Thistle is structured in a very similar way to Pascal programs
and even though there is essentially one elementary un-structured type, the litrals of
this type can have a form which implies an refined sub-type. Put another way, whilst
every elementary item in Thistle is a string, literals which look like integers, characters,
dates are simply representations of strings. There are also hexadecimal literals and
compressed hexadecimal literals.

Consequently a data item which defines an elementary value is simply a string and the
assignment:

Details.Account := 1048010481;

is indistinguishable from the following assignment:

Details.Account := ’1048010481’;

and in this case establishes the existance of the identifier if it does not already exist.

From the above fragments and the discussion on Thistle’s geneology, the elements
of Thistle are very similar to what one would expect from a contempory programming
language and comprise reserved words, special symbols, identifiers, literals, comments,
expressions and operators. Thistle scripts are free format and white spaces have no
grammatical meaning except where they might appear within string literals.

2.1 comments

Comments in Thistle are completely have no effect on the meaning and are completely
ignored by the interpretation of the script. Comments are introduced using the left
brace ( � ) and continue up to and including the next right brace ( � ). Comments can
span lines and can contain any characters except the right brace ( � ) which would end
the comment. Consequently, comments in Thistle cannot be nested.

5



6 CHAPTER 2. ELEMENTS OF THISTLE

2.2 Reserved Words

Reserved words are sequences that have a special meaning in terms of directing the
parsing of Thistle and the recognition of valid artefacts in terms of the Thistle syn-
tax. The ‘definition’ of the words are dealt with in the discussion of the respective
syntactical construct. The Thistle reserved words are:

and array begin case div
do downto usecase delete else
end external file for forward
function goto created if in
label mod exit not of
or by packed procedure package
run repeat set then to
isodate type until var while
with check break when modified
int real string accept desc
date target note interface

There are a few words listed above which do not correspond to current syntactical con-
structs of the language. These either correspond to features removed from the language
or are reserved for future extensions to the language.

2.3 Special Symbols

There are a number of sepcial symbols made up of either one character or pairs of char-
acters. These, together with the reserved words, comprise the operators and delimiters
of the language.

; See Section ??
:= See Section 3.2 and Section ??
<> See Section ??
> See Section ??
< See Section ??
<= See Section ??
>= See Section ??
= See Section ??
- See Section ??
: See Section ??

� and � See Section ??
< and > See Section ??
[ and ] See Section 2.6

2.4 Identifiers

Identifiers in Thistle are not quite the same as they are in Pascal. In Thistle identifiers
are restricted names of nodes in the name space tree (see Section 2.6). Identifiers are



2.5. LITERALS 7

case sensitive, they start with a letter which can be followed by any number of letters
or digits and the under-score character.

Identifier

�
� �

’A’ | ’B’ | ...| ’Z’
�� ���

� �
’a’ | ’b’ | ...| ’z’

�� ��
�� �

�
�
� �

’A’ | ’B’ | ...| ’Z’
�� ���

� �
’a’ | ’b’ | ...| ’z’

�� ��

� �
’0’ | ’1’ | ...| ’9’

�� ��

� � �� ��

��

�

�

�

��

�

�

�

��
�

2.5 Literals

Whilst all literals can thought of as strings, they can be expressed as numbers, string,
hexadecimal strings, or compressed hexadecimal strings:

Literal
�

String�
� �

Number
� �

HexadecimalString
� �

CompressedHexadecimalString

��

�

�

�

Thistleis an interpreted language and the resolution of values into concrete types does
not need to occur until run-time. Consequently, as all input is ultimately user input,
the type system exposed comprises a single type which is the string. The fact that a
string may or may not be described by a further restricted domain such a a numeric
string only needs to be checked and or considered at run-time. It is left up the use of a
string to determine whether or not the value is appropriate (for example, an arithmetic
operator requires a numeric value in its string operands). This does not mean that
the implementation cannot store intermediate results in the most appropriate concrete
format.

The generic string literal has the following format:



8 CHAPTER 2. ELEMENTS OF THISTLE

Escape
Character Character encoded in string
a alarm or bell
b back space
f forms feed
n new line
r carriage return
t horizontal tab
v vertical tab
’ apostrophe
" quotation marks�

backslash character itself

Table 2.1: Escape characters and their corresponding encoded characters

String

�
’

�
SequenceWithoutApostrophes

�
’�

� �
”

�
SequenceWithoutQuotes

�
”

��
�

where SequenceWithoutApostrophes is a sequence of characters excluding apostrophes,
and SequenceWithoutQuotes is a sequence of characters excluding quotation marks.
Neither string can contain the newline character (i.e. strings cannot span source text
lines), but they can contain escape characters, one of which represents the newline char-
acter. Also representable as escape characters are apostrophes and quotation marks. An
escape sequence comprises the

�
character followed by a character indicating the actual

character to appear in the string:

EscapeSequence

�
“

�
’a’ | ’b’ | ’f’ | ’n’ | ’r’ | ’t’ | ’v’�

� �
’ | " | ? |

�

��
�

Where the esacpe characters and the encoded characters are explained in Table 2.1.

A number can be represented as a quoted string or as a sequence of digits without the
quotation marks or apostrophes:

Number
�
’0’ | ’1’ | ...| ’9’

�� ���
�

��
�

A HexadecimalString allows any sequence of character values to be encoded and has
the following format:



2.6. TREE NAME SPACE 9

HexadecimalString

�
<<

�� �� �
HecadecimalDigitPair�

�
��

�
>>

�� �� �

Where

HexadecimalDigitPair

�
’0’ | ...| ’9’ | ’a’ | ...| ’f’

�� �� ��
�
� �

’0’ | ...| ’9’ | ’a’ | ...| ’f’
�� �� �

The uppercase equivalents of the hexadecimal digits digits ’a’ . . .’f’ may be used
in place of their lower case counterparts.

A CompressedHexadecimalString is a compressed representation of its uncompressed
value and has the following format:

CompressedHexadecimalString

�
<˜

�� �� �
HecadecimalDigitPair�

�
��

�
˜>

�� �� �

Whilst strings cannot span Thistle source code lines, string expressions with the same
intended value can. This is achieved using the # string concatenation operator.

2.6 Tree Name Space

All names exposed, created and used by Thistle artefacts are stored within a single
name space. This name space is organised as a tree structure with the root of the
tree named thistle. The construction of structured types such as maps, arrays, and
aggregates is achieved by maintaining sub-trees within the thistle name space.

Elementary items in Thistle artefacts appear in the same tree as leaf nodes. For exam-
ple, Details.Account above, above without further qualification refers to:

thistle.Packages[0].Details.Account

Figure 2.1 shows the top of the thistle tree and shows the hierarchial view of the
position of the node Account. The figure shows the structure given that the current
package is the first in the current run-time of the Thistle execution environment. This
also hints at the way in which arrays are mapped to thistle name space tree and is
a generalisation of the way in which Thistle handles maps.

A Variable is a path in the name space tree. It comrises either a single node or a
sequence of nodes or identifiers. The first identifier or node represents a point in the
tree from which a search for the node or identifier should (for references) or will (for



10 CHAPTER 2. ELEMENTS OF THISTLE

Packages System

thistle

0

Details

OpenAccount

ThePackage

Account

Figure 2.1: Thistle top level name space



2.6. TREE NAME SPACE 11

new nodes or definitions) be found. Any subsequent node will be found following
the previous node and must be a direct descendant of that node, or will be a direct
descendant of that node for a definition. A node need not be an Identifer, it could
comprise an expression between [ and ] (referred to as a PathEvaluation) which will
be evaluated at run-time and whose value is a further expansion of the path. The result
of the evaluation can result in names of nodes which are not valid Identifiers. This
is how arrays are defined in Thistle and which are implemented simply as the more
generic map data structure. The content of the ‘names’ of such nodes are not restricted
at all.

Variable
�

Identifier
�

VariableConcatenation�
� �

PathEvaluation
�

VariableConcatenation

��
�

where

VariableConcatenation

�
� �

.
�� �� �

Variable
� �

PathEvaluation
�

VariableConcatenation

��

�

�

and

PathEvaluation
�
[

�� �� �
Expression

�
]

�� �� �

The Expression may evaluate to string whose format is not a valid Identifier or sequence
of Identifers. For example, the path:

TheUsecase[0].Details.Account[’A B C’] := 1048010481;

refers to a variable which, after (and possibly before) execution of the assignment state-
ment represents the path shown in Figure 2.2. The figure shows the names of the nodes
and the relationship amongst the nodes. This example demonstrates how arrays (in-
dexed by numeric values) and maps (indexed by strings) are treated in a generalised
manner in Thistle which includes aggregates (structs in C or records in Pascal).

Because the height of the tree can grow significantly as a result of the combination of
uses of aggregates, maps and arrays as well as Thistle packages and usecases, path
names can become quite long especially if fully qualified from the thistle node.
This can have the effect of making the script bodies quite dense and difficult to read
and maintain. Thistle provides a mechanism that shortens names by supplying name
search start points in the thistle tree. This mechanism has the effect maintaining
nested open scopes in much the same way that Pascal opens scopes for local variables
whilst keeping the previously open containing scope open. As with Pascal it is also
possible to explicitly open a scope within a portion of the executable code using the
with statement (see Section 3.11). For example, in the following code fragment, all
the assignments of the literal 1048010481 are the same:



12 CHAPTER 2. ELEMENTS OF THISTLE

0

TheUsecase

Details

A B C
−−−−−−−−
1048010481

Account

Figure 2.2: Resultant evaluated path and node values

TheUsecase[0].Details.Account := 1048010481;

AddClient.NewClient := ’TheUsecase[0].Details.Account’;
[NewClient] := 1048010481;

AddClient.NewClient := ’TheUsecase[0]’;
[NewClient][’Details.Account’] := 1048010481;

It should be clear from the above, that when used as a map data structure, the meaning
of the period in a key string will add another layer to the name space tree. So for
example, assume in the following that the nodes, except for the first, do not yet exist,
then the assignment

AddClient.OldAccount[’Peter Rabbit’] := 1048010481;

results in the creation of the following structure in the name space tree:

OldAccount

AddClient

Peter Rabbit
−−−−−−−−
1048010481

And the assignment

AddClient.OldAccount[’Peter S. Rabbit’] := 1048010481;

results in the creation of the following structure:



2.6. TREE NAME SPACE 13

OldAccount

AddClient

Peter S

 Rabbit
−−−−−−−−
1048010481

A Variable is expected to exist wherever it is used except when the item is defined. In
Thistle user Variables and hence the corresponding identifiers are created by the first
occurance of the Variable in the artefact body and they do not have to be defined in
the artefacts preamble. However, whenever a Variable is created, the point within the
name space tree (i.e. the parent of the variable) has to be made explicit. In terms of
the nodes of a Variable this means that the first node has to already exist and must be
found by considering the current hierarchy of open scopes.

Scopes are opened implicitly by method or artefact invocation as well as explicitly
by the script writer using the width statement (see Section 3.11). When a scope is
opened because of an invocation (such as running a package or usecase), a node
with the same name as the package or usecase is created in the name space tree.
This node is where all local script defined Variables are located. For example, the
following code fragment when executed just before the point where the usecase is
about to return control to its caller results in the creation of sub-tree of the name space
shown in Figure 2.3 (assuming that the contents of the cell A1 in the sheet named in
SheetName with the workbook whose name is in BookName is not the same as the
value in the AccountNumber parameter and assuming the parameter SheetName
contains Sheet1):

usecase CheckAccount(AccountNumber,BookName,SheetName);

interface Portal.Excel : CodeMagus.excel;

begin
CheckAccount.checked := ’no’;
CheckAccount.myBook :=

Portal.Excel.Connect(BookName);

if CheckAccount.myBook.WorkSheets[SheetName].A[1]
= AccountNumber then

checked := ’yes’;

if checked = ’yes’ then begin
ReturnCode := 0;
Reason := ’’;
end

else begin
ReturnCode := 16;
Reason := ’InvalidAct’;
end

end.



14
C

H
A

PT
E

R
2.

E
L

E
M

E
N

T
S

O
F

T
H

IST
L

E

checked

CheckAccount

WorkSheets

1
−−−−−−−−
1023010231

Sheet1

myBook

A

AccountNumber
−−−−−−−−
1048010481

BookName
−−−−−−−−
testdata.xls

Packages

MyPackage

0

UseCases

3

Connect
−−−−−−−−
(Method)

SheetName
−−−−−−−−
Sheet1

ReturnCode
−−−−−−−−
16

Excel

Portal
Reason
−−−−−−−−
InvalidAct

Figure
2.3:



2.6. TREE NAME SPACE 15

We have described how interior nodes and leaves are defined, and that leaf nodes rep-
resent variables or methods. These are not the only types of nodes in the name space
tree. In general a node in the tree can be one of the following types:

Leaf attribute These leaf nodes behave as the usual elementary variables of the language. As
mentioned earlier, the type of the value of these nodes is always string as far as
its semantics or observed behaviour is concerned. The implementation is free
to represent the type in any suitable format, but when the value is extracted for
external interpretation (for example to pass the value to a portal method), the
string representation is expected to be regenerated (if not already stored as a
string) and passed in this string representation.

In the following code fragment, the string assignment might keep the interal
representation of the number as a string, but the assignment from the result of
the expression in the second assignment could store the result as a number. Fi-
nally, the if-statement comparing the two values would perform the compare as
though both items values were numeric and in this example, the boolean value
evulates to true:

{ The result of the following assignment could result in a string
representation of the number, for example as ’01234’. }

sampleCase.numberA := 01234;

{ The result of the following assignment could result in the
numeric 1234 being stored as the result of the expression. }

sampleCase.numberB := 1233+1;

{ Regardless of the internal representations of the numeric values, the
boolean expression in the following if-statement evaluates to true. }

if (numberA = numberB) and (numberA = 1233+1) then
System.Write(’ The expression evaluated to true!’);

Leaf method The values of these nodes are a callable method. This method can be invoked by
placing the parenthesis behind the name of the method in a Thistle script. Op-
tionally, any parameters to be passed to the script are listed in these parenthesis.
In the following code fragment, the the first assignment invokes the method after
evaluating the supplied parameter expressions and supplies the value returned by
the method. In the second assignment, the value assigned is the method itself,
and hence the third assignment has the same effect as the first assignment:

{ The first assignment evaluations the string expression argument and
passes the resultant value through to the method for execution
of the method by the Thistle run-time system. }

WorkSheet := Portal.Excel.Connect(myPath # ’WORKSHEET.XLS’);

{ The second assignment copies the method itself without invoking
the method. In this example, the third assignment is behaves in
the same way as the assignment above and results in the invocation
of the method. }



16 CHAPTER 2. ELEMENTS OF THISTLE

myUseCase.portalConnect := Portal.Excel.Connect;
portalConnect(myPath # ’WORKSHEET.XLS’);

The above code fragment illsutrates that methods (whether they be procedures or
functions are first class objects in Thistle and the following code is quite a valid:

usecase walktree(tree,apply);

...

begin
for node in tree do

if System.NodeType(node) = ’SubTree’ then
walktree(node,apply);

else
apply(node);

end;

And if the first call to walktree is:

walktree(myInteriorNode,printleaf);

Where printleaf is defined as:

usecase printleaf(leaf);

...

begin
System.WriteLn(’ Value is ’ # leaf);

end;

Subtree nodes A subtree node is simply an interior node in the name space tree whose children
are also in the name space tree within the Thistle execution environment. The
the node types of children of these nodes can be of any type. In the above code
fragments, the identifiers System and myUseCase represent interior subtree
nodes.

Interface nodes An interface node is an interior node associate with an interface. These nodes
represent the instantiated portals currently active and connected to the execution
environment. These nodes represent the portal instance and any children of these
nodes are interpreted as living outside of the run-time environment. The map-
ping of the children of these nodes to the system under test or the portal is the
responibility of the portal. As far as Thistle is concerned these nodes are virtual
in the that their interpretation exists outside of Thistle, but their behavour is in-
distinguishable from any other Thistle nodes except that they might expose some
side effects of the portal.

In the following code fragment, the node workbookA is an interface node and
the reference to the spreadsheet cell workbook.WorkSheet.Sheet1.A�

is to a virtual node. In portals, updates to variables or invocation of methods can
have side effects on other values. For example an application under test might
respond to a transaction and update a variable which makes the transaction re-
sult available. Similarly, updating a cell on spreadsheet may cause a formula in



2.7. STRUCTURE OF THISTLE ARTEFACTS 17

another cell, and hence another variable, to be updated. Not only is it possible
to have such side effects in the children nodes of interface codes, it is also pos-
sible for a side effect to change the shape of the name space sub-tree below the
interface node as the result of updating a variable or invoking a method under
the interface node.

usecase openAccount(workBookPath);

...

interface Portal.Excel : CodeMagus.Excel;

begin

...

openAccount.workbook := Portal.Excel.Connect(workBookPath);
workbook.WorkSheet.Sheet1.A[1] := ’6102045122080’;

...

end;

Nodes are created on demand and virtual nodes (below interface nodes) can be de-
stroyed, apparantly automatically, by side effects of updates through portals. Nodes
which are not the children of interface nodes and interface nodes can be explicitly
deleted using the delete statement (See Section ??). By being able to create nodes
on demand and using the delete statement Thistle script code can maintain aspects
of the thistle tree data structure.

2.7 Structure of Thistle Artefacts

Thistle artefacts usually contain a Header, a Preamble and a Body.

Artefact

�
Package�

� �
Usecase

� �
Instance

� �
Interface

��

�

�

�

A package is the top run unit in Thistleand corresponds to a program. From a sub-
program point of view, a package cannot invoke other packages. In Thistle sub-
program units do not have to be nested (and in the current implementation cannot be
nested). The units that a Thistle package can invoke are methods or procedures and
functions. There are a number of builtin or pre-defined methods and these all appear in
the tree attached to the node System (see Chapter 7).



18 CHAPTER 2. ELEMENTS OF THISTLE

A Package has the following structure:

Package

�
PackageHeader

�
Body

�
.

�� �� �

where

PackageHeader

�
package

�� �� �
Identifier ��

�
� �

� �
(

�� �� �
� �

Identifier�
�

,
�� �� �

��

��
�
)

�� ��
��

�
;

�� �� �

and

Body

�
CompoundStatement

�
.

�� �� �

(see Section 3.1 for details of the compound statement).

A Usecase is very similar to a Package, the only syntactical distinction is in the artefact
type:

Usecase
�

UsecaseHeader
�

Body
�
.

�� �� �

where

UsecaseHeader
�
usecase

�� �� �
Identifier ��

�
� �

� �
(

�� �� �
� �

Identifier�
�

,
�� �� �

��

��
�
)

�� ��
��

�
;

�� �� �



2.8. EXPRESSIONS AND OPERATORS 19

A usecase is an artefact which defines a method. This method is defined in a separate
file which has an internal name which maps to file system path names in an implemen-
tation defined manner. For example, the definition of Portal.Excel in:

interface Portal.Excel : CodeMagus.excel;

defines Portal.Excel under the current instance of the artefact in which it occurs.
The definition of the interface to this portal is taken from the external description using
the path CodeMagus.excel. In this example, CodeMagus maps to an impleme-
nation defined path name which refers to the local operating systems file system. The
last node of such external artefact references always maps to the actual file name on
the host system (with or without an extension and with or without any mandatory case
translation). In this example, CodeMagus.excel might refer to the file

C:\Eresia\Thistle\CodeMagus\excel.tid

on the Microsoft platforms. This same string might map to

/home/testing/thistle/CodeMagus/excel.tid

on Unix platforms and to

ERESIA.CML.TIDLIB(EXCEL)

on MVS, OS/390 and z/OS platforms.

See Chapter 6 for details of the external definitions of interfaces.

An instance is very similar to both a package and a usecase and is not intended to
be executed. The instance is a recorded as an audit log of the execution of a test.

2.8 Expressions and Operators

We mentioned earlier that the only elementary type was the string and that regardless
of the apparent type of a literal, it had the semantics of a string. Expressions in Thistle
operate on strings an return results which in turn are strings. This not to say that an
operator does not require it operands to be within a specific domain. The numeric
operators for example, require that their operands have nummeric values. Additionally,
some operators, apart from not being defined over certain values may also change their
meaning depending on the domain of the values of the operands. In Pascal, a similar
overloading of operators applies to, for example, the relational operatores such as <, =,
>, etc. where the < has a different meaning depending on the type of their operands.

Table 2.2 lists the Thistle operators, their precedence, associativity, and whether or not
they are monadic or dyadic.

As described below, the assignment operator is not a real operator as it does not result
in the evaualtion of a result, but rather causes a side effect. This is different from
assignment operator as found in languages such as C and C++ [?, ?] in which the
operator has both a side effect and a value (in C and C++ the value of the result of
the assignment operator is the value of the right-hand side sub-expression). Indeed in
Thistle as in Pascal, the assigment operator does not feature in the recursive definition
of expressions. An expression is composed of sub-expressions and elementary items
with the operators symbols and is defined recursively as follows:



20 CHAPTER 2. ELEMENTS OF THISTLE

Operator Precedence Associatvity Aridity Type
:= 0 n/a dyadic Assignment
<> 1 left dyadic Relational
>= 1 left dyadic Relational
<= 1 left dyadic Relational
= 1 left dyadic Relational
> 1 left dyadic Relational
< 1 left dyadic Relational
+ 2 left dyadic Arithmetic
- 2 left dyadic Arithmetic
# 2 left dyadic Concatenation
or 2 left dyadic Boolean
* 3 left dyadic Arithmetic
/ 3 left dyadic Arithmetic

div 3 left dyadic Arithmetic
and 3 left dyadic Boolean
mod 3 left dyadic Arithmetic
not 4 left monadic Boolean
- 4 left monadic Arithmetic

Table 2.2: Thistle Operators: Precedence, Associativity, and Aridity

Expression

�
(

�� �� �
Expression

�
)

�� ���
� �

MethodCallExpression
� �

Expression
�
#

�� �� �
Expression

� �
Expression

�
+

�� �� �
Expression

� �
Expression

�
-

�� �� �
Expression

� �
Expression

�
*

�� �� �
Expression

� �
Expression

�
/

�� �� �
Expression

� �
Expression

�
mod

�� �� �
Expression

� �
Expression

�
div

�� �� �
Expression

� �
Expression

�
<

�� �� �
Expression

� �
Expression

�
>

�� �� �
Expression

� �
Expression

�
=

�� �� �
Expression

� �
Expression

�
<>

�� �� �
Expression

� �
Expression

�
<=

�� �� �
Expression

� �
Expression

�
>=

�� �� �
Expression

� �
Variable

� �
Literal

� �
not

�� �� �
Expression

- Expression

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�



2.8. EXPRESSIONS AND OPERATORS 21

Assignment symbol This symbol is not really an operator in the ordinary sense in
that it does not produce a result which is a function of its left and right ‘operands’.
Instead, the evaluation of the assignment, whether it be in an assignment statement or
an if-statement, causes a side effect which results in the update (and possibly creation)
of the variable which appears on the left-hand side of the assignment symbol (See
Section 3.2).

Relational Operators These operators compare their left and right sub-expressions
and return a Boolean result which reflects the type of comparisson and the actual oper-
ator used. Unless both left and right sub-expressions are numeric and in the case where
both are elementary, the relational operator performs a string compare in which the
ordering is lexicographical. When doing so, the local colating sequence of the hosting
encvironment is used.

If need be, once evaluated sub-expressions that result in elementary items will be con-
verted to their string representation before the comparrison is performed.

Howver, when both sub-expressions are numeric, the compares are performed in a
machine in dependent manner with the ordering being the regular real number ordering.

These type conversion rules apply to all the relational operators, and such conversions
are implicitly performed based on the current types mplied by the values of the opera-
tors left and right sub-expressions.

The operands of the relational operators do not have to be elementary items and may
be aggregates (or interior nodes with children). In these cases, the orderings are not
total and are evaluated by tree-walks of the evaluated left and right sub-expressions.

The following descibes the meaning of the operators where both left and right sub-
expressions evaluate to elementary items.

< The left sub-expression is evaluated and compared to the evaluated right sub-
expression and if the left sub-expression appears strictly earlier than the right
sub-expression in the ordering indicated by the types of the sub-expressions as
determined by the typing rules, then the operator evaluates to true; otherwise the
operator evaluates to false.

In the the following fragment were executed, the code would execute the method
System.WriteLn:

local.lower := ’Apple’;
local.higher := ’Peers’;
if local.lower < local.higher then

System.WriteLn(’Apples are less than Peers’);

> The left sub-expression is evaluated and is compared to the evaluated right sub-
expression and if the left sub-expression appears strictly later than the right sub-
expression in the ordering indicated by the types of the sub-expressions as de-
termined by the typing rules, then the operator evaluates to true; otherwise the
operator evaluates to false.

If the following fragment results in the invocation of the methodSystem.WriteLn.

local.lower := 1;
local.higher := 2;



22 CHAPTER 2. ELEMENTS OF THISTLE

if not (local.lower > local.higher) then
System.WriteLn(’One really is less than two!!’);

= The left sub-expression is evaluated and compared to the evaluated right sub-
expression and the operator evaluates to true of the operands are determined
to be equal. As with the other relational operators, depending on whether the
operands can be converted to numeric values, an implicit conversion could be
performed. For example, in the following fragment, the operands of the equals-
operator are compared and the result of the operation is true causing the method
System.WriteLn to be invoked.

local.first_number := 0001;
local.second_number := ’1’;
if local.lower = local.higher then

System.WriteLn(’The numbers are equal!’);

<> The left and right sub-expressions are evaluated and compared. The result evaulates
to true if the operands are not equal. The following two fragments both cause
the method System.WriteLn to be invoked; or neither causes the method to
be invoked:

if local.lower = local.higher then
System.WriteLn(’The numbers are equal!’);

if not (local.lower <> local.higher) then
System.WriteLn(’The numbers are equal!’);

<= The left sub-expression and right sub-expressions are evaluated and the results
compared. The operator evaluates to true if the left sub-expression appears ear-
lier than the right sub-expression in the appropriate ordering or the operands
compare equal.

>= The left sub-expression and right sub-expressions are evaluated and the results
compared. The operator evaluates to true if the left sub-expression appears later
than the right sub-expression in the appropriate ordering or the operands compare
equal.

The relational operators are also defined in the case where both left and right sub-
expressions do not evaluate to elementary items. For example, when one of the operands
evaluates to an aggregate or sub-tree. In this case the operator is evaluated by walking
the sub-tree comparing sub-trees and leaf nodes (or elementary items) based on the
items names within the sub-trees.

In the description of the operators for the case where the operands are not both ele-
mentary items, the following code fragment is assumed to have created the context in
which the relational operators are evaluated in the examples below:

local.A.a := ’a’;
local.A.b := ’b’;
local.A.c := ’c’;
local.B.a := ’a’;
local.B.b := ’b’;
local.B.c := ’c’;
local.C.a := ’a’;
local.C.b := ’b’;
local.D.a := ’a’;



2.8. EXPRESSIONS AND OPERATORS 23

local.D.x := ’y’;

< The left and right sub-expression operands are evaulated and if resultant left
operand sub-tree is imbedded in the right operand sub-tree then the operator
evaluates to true; otherwise the operator evaluates to false. For example, in the
following code fragment, the methodIs.Imbedded is invoked, but the method
Is.NotImbedded is not invoked:

if local.A < local.C then
Is.Imbedded(local.A, local.C);

if local.A < local.B then
Is.NotImbedded(local.A, local.C);

If there is either an additional item (aggregate or elementary) in the evaluated left
sub-tree value which does not appear in the evaluated right sub-tree value, or an
elementary value in the left sub-tree is not less than the corresponding (has the
same name and parents, and so on) elementary value in the right sub-tree, then
the comparrison evalues to false. Further, if the evaluated left and right sub-tree
operands are identical in structure and they have the same elementary leaf item
values, then the operator evaluates to false.

> The left and right sub-expression operands are evaluated and if the resultant
right operand sub-tree is imbedded in the left operand sub-tree then the oper-
ator evaulates to true; otherwise the operator evaluates to false. For example,
in the following code fragment, the method Is.Imbedded is invoked, but the
method Is.NotImbedded is not invoked:

if local.C > local.A then
Is.Imbedded(local.A, local.C);

if local.C > local.D then
Is.NotImbedded(local.C, local.D);

If there is either an additional item (aggregate or elementary) in the evaluated
right sub-tree value which does not appear in the evaluated left sub-tree value, or
an elementary value in the left sub-tree is not less than the corresponding (has the
same name and parents, and so on) elementary value in the right sub-tree, then
the comparrison evalues to false. Further, if the evaluated left and right sub-tree
operands are identical in structure and they have the same elementary leaf item
values, then the operator evaluates to false.

= The left and right sub-expressions are evaluated and if the resultant trees are
identical in structure and the elementary leaf items have the same values, then
the operator evaluates to true; otherwise it evaluates to false. In the following
example, the method Is.Equal is invoked, but the method Is.NotEqual is
not:

if local.A = local.B then
Is.Equal(local.A, local.B);

if local.A = local.C then
Is.NotEqual(local.A, local.C);

if local.C = local.D then



24 CHAPTER 2. ELEMENTS OF THISTLE

Is.NotEqual(local.C, local.D);

<> The left and right sub-expression operands are evaluated and if either the left
operand sub-tree is imbedded in the right operand sub-tree or the right operand
sub-tree is imbedded in the left operand sub-tree, but the two sub-trees are not
idendical then the operator evaluates to true; otherwise it evaluates to false. In
the following example, the method Is.Imbedded is invoked, but the method
Is.NotEqual is not:

if local.A <> local.C then
Is.Imbedded(local.A, local.C);

if local.A <> local.B then
Is.NotEqual(local.A, local.B);

Note that the following two if-statements do not have the same meaning given
that the relation operators do not always define a total ordering:

if local.A <> local.C then
Is.CheckOperands(local.A, local.C);

if not (local.A = local.C) then
Is.CheckOperands(local.A, local.C);

<= The left and right operand sub-expressions are evaluated and if the resultant left
sub-tree is imbedded in the resultant right sub-tree (as defined above for the
< operator) or the two sub-trees compare equal under the definition of the =
operator as described above, then the <= operator evaluates to true; otherwise it
evaluates to false.

>= The left and right operand sub-expressions are evaluated and if the resultant right
sub-tree is imbedded in the resultant left sub-tree (as defined above for the > op-
erator) or the two sub-trees compare equal under the definition of the = operator
as described above, then the >= operator evaluates to true; otherwise it evaluates
to false.

Arithmetic Operators The arithmetic operators take numeric operands and produce
a numeric result. The numeric operands can be obtained by string operators and the
context at the time of of the evailation of of the operator (i.e. at run-time) determines
any implicit conversions which might take place. Such conversions are automatic and
have not semantic surprises as all elementary types in Thistle are considered strings
regardless of any internal optimised representations.

All the arithmetic operators are dyadic, except the unary negation operator which has
the same symbol as the dyadic subtraction operator. Also, unlike the relational opera-
tors, the arithmetic operators can only operate on elementatry numeric items.

+ The left and right sub-expressions are evaluated. Both are required to form a
numeric result or a string result which contains valid numerics. For example, in
the following fragment the Boolean expression avaluates to true and the method
System.WriteLn is invoked:

if ’0002’+2 = 4 then
System.WriteLn(’Computes!’);



2.8. EXPRESSIONS AND OPERATORS 25

- If used as the unary negation operator, the right sub-expression is evaluated and
the result is expected to be numeric. The result of rvaluating the operator returns
the negation of the evaluated numeric value. In the following example the values
of local.a and local.b end up having the same value, namely -10:

local.a := -10;
local.b := 10;
local.b := -local.b;

Note that in this example, the first assignment does not involve the negation
operator and the minus sign is part of the number being assigned to local.a.

When used as dyadic binary operator, the operation performed is subtraction. In
the following example the value that local.b ends up with is also -10:

local.a := 100;
local.b := 90;
local.b := local.b-local.a;

* The left and right sub-expressions are evaluated and the resultant values are ex-
pected to be numeric. The operator evaluates the product of the left and right
numeric sub-expression values by by multiplyig the left sub-expression value by
the right sub-expression value. In this example, local.b ends up with a value
of 110:

local.a := 10;
local.b := 11;
local.b := local.b*local.a;

/ The left and right sub-expressions are evaluated and the resultant values are ex-
pected to be numeric. The operator evaluates the quotient of the left and right
numeric sub-expression values by by dividing the left sub-expression value by
the right sub-expression value. In this example, local.b ends up with a value
of 5.5:

local.a := 11;
local.b := local.a/2;

div The left and right sub-expressions are evaluated and the the resultant values are
expected to be numeric. The div operator performs and generalised integer
division where the result of the division retrurns a integer value. In this example,
local.b ends up with a value of 5:

local.a := 11;
local.b := local.a div 2;

The operation is generalised in the sense that the operands do not have to have
integer values.

mod The left and right sub-expressions are evaluated and the resultant values are ex-
pected to be numeric. The mod operator returns the remainder from the division.
The operator is defined as:

local.q := local.a div local.b;
local.remainder := local.a-local.q*local.b;

The mod operator is generalised in the same sense as the div operator. In the
following example, local.b ends up with a value of 1:



26 CHAPTER 2. ELEMENTS OF THISTLE

local.a := 11;
local.b := local.a mod 2;

Boolean Operators The operands of Boolean operators have restrictions which are
similar to the arithmentic operators in that the operand sub-expressions must also eval-
uate to elementary numeric items. However, in order to be valid Boolean values the
numeric values are expected to be in � ���

�

� . The Boolean false value is represented by
the integer zero and the Boolean true value is represented by the integer one.

Fundamentally different from the arithmetic operators, howver, and a departure from
the usual Pascal semantics, the order of evaluation of the conjucntion and-operator
and the disjunction or-operator is the same as in C and C++ [?, ?]. That is, the left
and right sub-expressions are evaluated in a left-to-right manner with the the right sub-
expression being evaluated conditionally on the value of the left sub-expression.

and The left sub-expression operand is evaluated and if the operand evaluates to true,
the right sub-expression operand is evaluated and the result is the value of the
right sub-expression. If the left sub-expression evaluates to false, then the result
of the evaluation of the operator is false.

In the following, the method Never is never invoked:

local.false := 0;
if local.false and Never(’Mind!’) then

System.WriteLn(’Should never write this!’);

or The left sub-expression operand is evaluated and if the operand evaluates to false,
the right sub-expression operand is evaluated and the result is the value of right
sub-expression. If the left sub-expression evaluates to true, then the result of the
evaluation of the operator is true.

In the follwing, the method Always is alwayes invoked:

local.false := 0;
if local.false or Always(’Invoked!’) then

System.WriteLn(’Should conditionally write this!’);

not The not Boolean operator is a unary operator which evaluates its right sub-
expression operand which is expected to evaluate to a Boolean value. The result
of evaulating the not operator is to negate the Boolean value of the evalated
right sub-expression.

For example, in the following the local.a ends up with the value of one (true)
and local.b ends up with the value of zero (false):

local.false := 0;
local.true := 1;
local.a := not local.false;
local.b := not local.true;

The String Concatenation Operator The string concatenation operator (#) can be
applied to any elementary leaf item or literal. The string representations of the resultant
evaluated left and right sub-expressions are concatenated together to form the result
string.



2.8. EXPRESSIONS AND OPERATORS 27

For example, the following takes a integer part and concatenates an decimal point fol-
lowed by decimal digits:

local.amount := local.integer # ’.’ # local.decimalDigits;



28 CHAPTER 2. ELEMENTS OF THISTLE



Chapter 3

Executable Statements

Interface definition artefacts in Thistle contain no executable statements, they simply
provide definitions to the run-time system regarding the location of the corresponding
portal, and the protocol for the run-time environment to interact with the portal.

Howver, being a scripting language most artefacts include some logic or code in the
form of executable statements. Portals also provide logic, but apart from the interface
definition, this is done at a level which is hosted by the execution evironment of the
run-time system (or one of its components or connected systems). In anycase, such
portal code is provided by the provider of the access to the channel covered by the
portal and not by the user of Thistle.

Each Thistle language artefact type or element thereof defines its methods (functions or
procedures) using the same grammar. This grammar too is modeled on the executable
statements of Pascal and is described in this chapter. In Chapter ?? the usecase
and package artefact types were introduced. In their respective definitions both arte-
facts comprised a header followed by a Body. It is the body of an artefact type which
describes the executable statements of the artefact:

Body

�
Preamble

�
CompoundStatement

�

where the Preamble to an artefact provides certain documentation regarding the arte-
fact. A Preamble comprises a number of sections some of which are mandatory and
some of which are optional:

29



30 CHAPTER 3. EXECUTABLE STATEMENTS

Preamble
�

MandatoryPreambleSections ��
�
� �

OptPreambleSections ��
�
� �

OptDeclarativePreambleSecions
�

MandatoryPreambleSections provide for information about the creator of the artefact,
some description of the artefact, the date the artefact was created and the target to which
the artefact applies:

MandatoryPreambleSections

�
Creator

�
Description

�
Date

�
Target

�

Note that the order in which these sections appear is important, and they must be pro-
vided in the order indicated.

Creator
�
created

�� �� �
by

�� �� �
String

�
;

�� �� �

The creator string is a regular Thistle string literal as described in Section 2.5.

Description

�
desc

�� �� �
String

�
;

�� �� �

The Description section provides a mechanism for assiging an comment to the artefact
which is formally part of the description of the artefact. The description is a regular
Thistle string literal as described in Section 2.5.

Date
�
date

�� �� �
ISODate

�
;

�� �� �

The Date section is provided so that a date can be associated with the artefact. This
date is interpreted as the date the artefact was created. ISODate has the ISO date and
time format:

yyyy-mm-ddThh:mm:ss

Where the portion before the T-character is the date and the portion after the T character
is the time stamp. In the date portion, yyyy is the four digit year, mm is two digit the
month number, and dd is the two digit day of the month. In the format of the time-
stamp, the hh is the hour of the day accordin to the twentry four hour clock format, mm
is the two digit minutes passed the hour and ss is the two digits passed the minute.



31

Target

�
target

�� �� �
String

�
;

�� �� �

The Target preamble section is a mandatory comment field which indicates the target
system under test to which the artefact applies. The target is a regular Thistle string
literal as described in Section 2.5.

OptPreambleSections provide additional optional data regarding the artefact. Each
section can appear any number of times, in any order, or not at all. These sections
are provided as additional structured comments so that standardised comments can be
included as part of every Thistle artefact.

OptPreambleSections

�
� �

AdditionalPreambleSections

��
�

AdditionalPreambleSections
�

AdditionalPreambleSection�
� �

AdditionalPreambleSections
�

AdditionalPreambleSection

��
�

Where

AdditionalPreambleSection
�

Notes�
� �

Modified

��
�

Notes
�
note

�� �� �
String

�
;

�� �� �

The Notes secion is designed so that any additional commentary can be include as part
of the artefact. For example, if the artefacts are being version controlled through a CVS
[?] repository, then you might choose to described your CVS $Log:$ entries as Notes
strings.

Modified

�
modified

�� �� �
by

�� �� �
String

�
;

�� �� �

The Modified optional preamble section is provided as a means by which anyone mod-
ifying the artefact can record the name of the user who modified the artefact. A Notes
optional preamble section can be used to record the details of the modification.

The OptDeclarativePreambleSections are not documentary preamble sections. These
sections are used to associate an externally defined artfeact with the current Thistle
artefact and to define the position in the thistle tree that the externally defined arte-
facts are to be located. Examples of such artefacts are the portal (intriduced using the



32 CHAPTER 3. EXECUTABLE STATEMENTS

interface declarative section) and usecase introduced using a declaraitvesection
of the same name (examples of these declarative sections appeared in Chapter ??).

OptDeclarativePreambleSections

�
� �

DeclarativePreambleSections�
�

��

��
�

DeclarativePreambleSections
�
usecase

�� �� �
Variable

�
:

�� �� �
Variable

�
;

�� ���
� �

interface
�� �� �

Variable
�
:

�� �� �
Variable

�
;

�� ��
��

�

Whether an externally defined usecase or an interface to a portal is being intro-
duced to the current Thistle artefact the interpretation of the Variables on the left and
right hand side of the semi-colon remains unchanged. The Variable on the left-hand
side pf the semi-colon is the name in the thistle name space at which the Thistle
run-time system is to attach the externally defined artefact for use within the current
artefact. More often than not, this would cause the creation of the node on the left-hand
side of the semi-colon.

The Variable on the right-hand side of the semi-colon is not in the thistle name
space, but is a Variable in the name space of the hosting run-time system. An imple-
mantaion would map this Variable to the hosting systems fike system name space (as
described in Chapter ??). As mentioned in that chapter, it is the responsibity of the
implementation to map the Variable name into the lcoal systems name space in such a
manner as to mask any local-only naming conventions from the content of the artefact
(see the examples in Chapter ??).

CompoundStatement

�
begin

�� �� �
� �

Statement�
�

��

��
�
end

�� �� �

A statement can be any one of the execuatble statement allowed in an artefact Body:



33

Statement
�

AssignmentStatement�
� �

IfStatement
� �

ForStatement
� �

WhileSatement
� �

RepeaStatement
� �

WithStatement
� �

BreakStatement
� �

CheckStatement
� �

MethodInvocationStatement
� �

ReturnStatement
� �

CompoundStatement

��

�

�

�

�

�

�

�

�

�

�

The Thistle statements are taken from Pascal [?]. Two notable and conscious omis-
sions are the goto statement and the case statement. Addititionally, Thistle intro-
duces statements which make the language suitable for scripting language in a testing
environment, most notably the BreakStatement and the CheckStatement.

As mentioned in the previous chapter all Thistle variables can be brought into exictance
by demand and do not have to be declared. This is unlike Pascal, and necessaattes
a means of destroying createdvariables and sub-trees of the thistle name space.
Thistle has a DeketeStatement which is analogous to the Pascal dispose predefined
procedure.

There is no counterpart in Pascal to the ReturnStatement. The ReturnStatement in
Thistle is very similar the C or C++ return statement.

In the following sections, each of the Thistle statements is described giving its gram-
mar and suitable examples. It might be instructive to give a full example of a small
package:

package CISCreateBusClients;

{ Preamble }

Created by ’Han Solo’;
Description ’CIS Package’;
Date 2003-01-08T22:01:05;
Target ’ALPHA’;

usecase CreateNew : MyPlace.CreateNewClient1;
interface Portal.Excel : CodeMagus.Excel;



34 CHAPTER 3. EXECUTABLE STATEMENTS

begin

CISCreateBus_Nedbank.XLS1 := Portal.Excel.Connect(’tspread.xls’);

for index := 1 to 1 do
CreateNew( Fred.WorkSheet.Sheet1.A[index] );

end.

From the heading, the artefact in this example is a package, its name is CISCre-
ateBusClients and that this package has no parameters.

3.1 Compond Statements

3.2 Assigment Statement

AssignmentStatement

�
Variable

�
:=

�� �� �
NamedExpression

�
;

�� �� �

3.3 Transfer of Control: Method Invocation

MethodInvocationStatement
�

Variable
�
(

�� �� �
� �

Expression�
�

,
�� �� �

��

��
�
)

�� �� �
;

�� �� �

3.4 Transfer of Control: The return Statement

ReturnStatement
�
return

�� �� �
� �

Expression

��
�
;

�� �� �



3.5. CONDITIONAL EXECUTION 35

3.5 Conditional Execution

IfStatement

�
if

�� �� �
Expression

�
then

�� �� �
Statement ��

�
� �

� �
else

�� �� �
Statement

��
�

3.6 Iteraction: The for Statement

ForStatement
�
for

�� �� �
Variable

�
:=

�� �� �
Expression

�
to

�� ���
� �

downto
�� ��

��
�

Expression
�
do

�� �� �

�
�
� �

Statement
�

3.7 Loops: The while Statement

WhileStatement
�
while

�� �� �
Expression

�
do

�� �� �
Statement

�

3.8 Loops: The repeat Statement

RepeatStatement

�
repeat

�� �� �
� �

Statement�
�

��

��
�
until

�� �� �
Expression

�
;

�� �� �



36 CHAPTER 3. EXECUTABLE STATEMENTS

3.9 Interrupting Execution: The check Statement

CheckStatement
�
check

�� �� �
String

�
(

�� �� �
Expression�

�
��

�
)

�� �� �
;

�� �� �

3.10 Interrupting Execution: The break Statement

BreakStatement
�
break

�� �� �
� �

String

��
�
;

�� �� �

3.11 Choosing Name Space Scopes: The with State-
ment

WithSattement
�
with

�� �� �
Variable

�
do

�� �� �
Statement

�



Chapter 4

Thistle Usecases

37



38 CHAPTER 4. THISTLE USECASES



Chapter 5

Thistle Instances

39



40 CHAPTER 5. THISTLE INSTANCES



Chapter 6

Thistle Interfaces

41



42 CHAPTER 6. THISTLE INTERFACES



Chapter 7

Thistle System Objects

43



44 CHAPTER 7. THISTLE SYSTEM OBJECTS



Bibliography

[1] Specification for computer programming language — Pascal. Technical Report
ISO 7185-1982, 1982.

[2] Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report. Springer-
Verlag, third edition, iso standard pascal edition, 1985. Revised by Andrew B.
Mickel and James F. Miner.

45


